Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Biol Sci ; 287(1930): 20200220, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32605516

ABSTRACT

For decades, fisheries have been managed to limit the accidental capture of vulnerable species and many of these populations are now rebounding. While encouraging from a conservation perspective, as populations of protected species increase so will bycatch, triggering management actions that limit fishing. Here, we show that despite extensive regulations to limit sea turtle bycatch in a coastal gillnet fishery on the eastern United States, the catch per trip of Kemp's ridley has increased by more than 300% and green turtles by more than 650% (2001-2016). These bycatch rates closely track regional indices of turtle abundance, which are a function of increased reproductive output at distant nesting sites and the oceanic dispersal of juveniles to near shore habitats. The regulations imposed to help protect turtles have decreased fishing effort and harvest by more than 50%. Given uncertainty in the population status of sea turtles, however, simply removing protections is unwarranted. Stock-assessment models for sea turtles must be developed to determine what level of mortality can be sustained while balancing continued turtle population growth and fishing opportunity. Implementation of management targets should involve federal and state managers partnering with specific fisheries to develop bycatch reduction plans that are proportional to their impact on turtles.


Subject(s)
Conservation of Natural Resources/methods , Fisheries , Turtles , Animals , Ecosystem , Oceans and Seas
2.
Dis Aquat Organ ; 142: 189-196, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33331286

ABSTRACT

Decompression sickness (DCS) has been described mainly in loggerhead turtles Caretta caretta bycaught in trawls and gillnets. Here we present cases of gas emboli (GE) in 8 green turtles Chelonia mydas and 2 Kemp's ridleys Lepidochelys kempii entrained in hopper dredges that were working at 8.8-15.2 m depths during shipping channel maintenance or beach renourishment activities. Turtle weights ranged from 2.2 to 6.7 kg. All were found alive with blunt force injuries from passage through the dredge and were taken to rehabilitation facilities. Four green turtles died or were euthanized within 24 h. Six turtles survived. Radiographic or ultrasonographic evidence of GE was detected in 4 turtles, including 3 mortalities. Computed tomography (CT) revealed perirenal and cervical GE in 4 turtles, including 1 mortality. No GE were detected in 2 of the survivors. Upon necropsy, GE were found in mesenteric vessels, the right atrium, and kidneys. Histopathology confirmed that tissues were in a good state of preservation without evidence of bacterial overgrowth or putrefactive gas formation. Death likely resulted primarily from massive tissue trauma from the dredge, but moderate GE could have led to DCS and complicated recovery. The surviving turtles weighed less than those that did not survive. Besides hypothesized stress/exercise-induced circulatory changes of blood through the lungs and pressure reduction of forced surfacing from depth, drastic pressure change within the dredge pipes before and after the pump could contribute to GE. Hopper dredge entrainment is an additional cause of GE and potential DCS in sea turtles.


Subject(s)
Embolism, Air , Turtles , Animals , Embolism, Air/veterinary , South Carolina
3.
Dis Aquat Organ ; 127(2): 145-150, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29384484

ABSTRACT

Five green (Chelonia mydas) and 11 Kemp's ridley (Lepidochelys kempii) sea turtles found dead, or that died soon after stranding, on the southern Texas (USA) coast during 2 Karenia brevis blooms (October 2015, September-October 2016) were tested for exposure to brevetoxins (PbTx). Tissues (liver, kidney) and digesta (stomach and intestinal contents) were analyzed by ELISA. Three green turtles found alive during the 2015 event and 2 Kemp's ridley turtles found alive during the 2016 event exhibited signs of PbTx exposure, including lethargy and/or convulsions of the head and neck. PbTx were detected in 1 or more tissues or digesta in all 16 stranded turtles. Detected PbTx concentrations ranged from 2 to >2000 ng g-1. Necropsy examination and results of PbTx analysis indicated that 10 of the Kemp's ridleys and 2 of the green turtles died from brevetoxicosis via ingestion. This is the first documentation of sea turtle mortality in Texas attributed to brevetoxicosis.


Subject(s)
Harmful Algal Bloom , Marine Toxins/toxicity , Mycotoxicosis/veterinary , Oxocins/toxicity , Turtles , Animals , Dinoflagellida , Mycotoxicosis/pathology , Texas
4.
Glob Chang Biol ; 22(2): 567-76, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26365568

ABSTRACT

Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.


Subject(s)
Models, Theoretical , Plastics , Turtles , Water Pollutants , Animals , Eating , Female , Oceans and Seas , Risk Assessment
5.
Ecol Appl ; 26(8): 2706-2717, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27907265

ABSTRACT

Coastal areas provide nesting habitat for marine turtles that is critical for the persistence of their populations. However, many coastal areas are highly affected by coastal development, which affects the reproductive success of marine turtles. Knowing the extent to which nesting areas are exposed to these threats is essential to guide management initiatives. This information is particularly important for coastal areas with both high nesting density and dense human development, a combination that is common in the United States. We assessed the extent to which nesting areas of the loggerhead (Caretta caretta), the green (Chelonia mydas), the Kemp's ridley (Lepidochelys kempii), and leatherback turtles (Dermochelys coriacea) in the continental United States are exposed to coastal development and identified conservation hotspots that currently have high reproductive importance and either face high exposure to coastal development (needing intervention), or have low exposure to coastal development, and are good candidates for continued and future protection. Night-time light, housing, and population density were used as proxies for coastal development and human disturbance. About 81.6% of nesting areas were exposed to housing and human population, and 97.8% were exposed to light pollution. Further, most (>65%) of the very high- and high-density nesting areas for each species/subpopulation, except for the Kemp's ridley, were exposed to coastal development. Forty-nine nesting sites were selected as conservation hotspots; of those high-density nesting sites, 49% were sites with no/low exposure to coastal development and the other 51% were exposed to high-density coastal development. Conservation strategies need to account for ~66.8% of all marine turtle nesting areas being on private land and for nesting sites being exposed to large numbers of seasonal residents.


Subject(s)
Nesting Behavior , Turtles , Animals , Ecosystem , Forecasting , Human Activities , Humans , Population Density , Reproduction , United States
6.
J Zoo Wildl Med ; 46(3): 637-40, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26352978

ABSTRACT

This study determined the tissue distribution and activities of eight enzymes in 13 juvenile Kemp's ridley turtles (Lepidochelys kempii) that died after stranding. Samples from the liver, kidney, skeletal muscle, cardiac muscle, pancreas, lung, small intestine, and spleen were evaluated for activities of alanine aminotransferase (ALT), alkaline phosphatase (ALP), amylase, aspartate aminotransferase (AST), creatine kinase (CK), γ-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and lipase. AST, CK, and LDH activities were highest in cardiac and skeletal muscle but were also found in all other tissues. Amylase and lipase activities were highest in the pancreas and low in all other tissues. ALP activity was highest in the lung. ALT activity was highest in liver, kidney, and cardiac muscle, and GGT activity was highest in the kidney, but activities of these enzymes were low in all tissues. These data may assist clinicians in interpretation of plasma enzyme activities of Kemp's ridley turtles.


Subject(s)
Enzymes/metabolism , Gastrointestinal Tract/enzymology , Kidney/enzymology , Muscle, Skeletal/enzymology , Spleen/enzymology , Turtles/physiology , Animals , Enzymes/isolation & purification , Myocardium/enzymology
7.
Conserv Biol ; 28(1): 129-39, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23914794

ABSTRACT

Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.


Subject(s)
Conservation of Natural Resources , Gastrointestinal Contents , Plastics/analysis , Turtles/physiology , Water Pollutants/analysis , Animals , Feeding Behavior , Species Specificity
8.
Open Res Eur ; 4: 41, 2024.
Article in English | MEDLINE | ID: mdl-39309191

ABSTRACT

Background: Every few years, juvenile Kemp's ridley turtles ( Lepidochelys kempii) are stranded on the Dutch coasts. The main population distribution of this critically endangered species primarily inhabits the Gulf of Mexico and the east coast of the United States. This study focuses on five reports from the Netherlands between 2007 and 2022, where juvenile turtles were reported to strand alive during the winter, albeit in a hypothermic state. At ambient ocean temperatures between 10°C and 13°C, Kemp's ridley turtles begin to show an inability to actively swim and remain afloat on the ocean's surface, a condition termed 'cold stunning'. Understanding their transport in cold-stunned state can help improve the rehabilitation process of stranded turtles. Methods: Cold-stunned turtles are back-tracked as passive, virtual particles from their stranding location using Lagrangian flow modelling. This study investigates when and where these juvenile turtles cross the threshold temperatures between 10° C and 14° C before stranding by tracking the temperature along the trajectories. Results: As expected, the simulations show the transport of the cold-stunned turtles via the English Channel. More surprisingly, the analysis suggests they likely experience cold-stunning in the southern North Sea region and encounter temperatures below 10°C for only a few days to up to three weeks, and below 12°C for up to a month before stranding. Conclusions: The estimate of cold-stunned drift duration of the turtles provides additional knowledge about their health status at the time of stranding. Adherence to rehabilitation protocols for Kemp's ridley and post-release monitoring are recommended to improve their long-term survival.

9.
Glob Chang Biol ; 19(10): 3082-92, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23744698

ABSTRACT

Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies.


Subject(s)
Climate Change , Human Activities , Population Density , Turtles/physiology , Animal Migration , Animals , Ecosystem , Forecasting , Humans , Models, Theoretical , Nesting Behavior , United States
10.
Front Vet Sci ; 10: 1101206, 2023.
Article in English | MEDLINE | ID: mdl-36814467

ABSTRACT

A total of 55 digital radiographic studies from 53 individual juvenile Kemp's ridley sea turtles (Lepidochelys kempii) were retrospectively used to determine the normal radiographic anatomy of the lower respiratory tract in sea turtles that had been stranded due to hook-and-line injury and were otherwise clinically healthy. There were three or four projections available for each study: dorsoventral (DV), rostrocaudal (RoCd), and left and/or right lateral. The DV and RoCd were most conducive for assessing global lung volume and symmetry of lung volume. The DV and lateral views were most helpful for evaluating the main bronchus and its branching channels and for assessing lung margination. The RoCd view was most useful for assessing the symmetry of the lung opacity. The lateral views were most helpful for assessing the ventral margin of each lung lobe. On the lateral view, the main bronchus lay ventrally and coursed horizontally through the lung from cranial to caudal. On the DV view, the bronchus lay medially and was observed to be curvilinear coursing caudomedially. On the RoCd view, the main bronchus was located ventromedially. The RoCd view demonstrated the channels and niches end-on resulting in a reticulated or honeycomb appearance. The channels were seen as uniform striations coursing perpendicular to the main bronchus on the lateral views (vertical striations coursing dorsal to ventral) and DV views (horizontal striations coursing medially to laterally).

11.
Mar Pollut Bull ; 193: 115108, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37307750

ABSTRACT

Sea turtles have been found to interact with discarded fishing gear, plastic bags, and balloons, among other anthropogenic materials. One infrequently documented interaction is entanglement in scientific research instruments, which presents a unique management and mitigation challenge. This paper highlights two Kemp's ridley sea turtles that stranded ~10 years apart, deceased and entangled in weather balloons in Virginia, USA. The turtles were recovered 11 and 20 days after the balloons were launched from two different facilities along the Virginia coast in 2009 and 2019, respectively. Based on external evaluation and necropsy findings, both animals were assigned a probable cause of death of debris entanglement. This paper seeks to inform other stranding response organizations, as well as stakeholders like manufacturers and users of weather balloons, of the threats these instruments can pose to marine life. With strengthened education, collaboration, and changes in instrument design, future entanglements may be mitigated.


Subject(s)
Turtles , Animals , Weather , Virginia
12.
Animals (Basel) ; 11(10)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34679947

ABSTRACT

Respiratory disease is a common cause of morbidity and mortality in sea turtles, including the Kemp's ridley sea turtle (Lepidochelys kempii). Although culture-dependent methods are typically used to characterize microbes associated with pneumonia and to determine treatment, culture-independent methods can provide a deeper understanding of the respiratory microbial communities and lead to a more accurate diagnosis. In this study, we characterized the tracheal lavage microbiome from cold-stunned Kemp's ridley sea turtles at three time points during rehabilitation (intake, rehabilitation, and convalescence) by analyzing the 16S rRNA gene collected from tracheal lavage samples. We retrospectively developed a radiographic scoring system to grade the severity of lung abnormalities in these turtles and found no differences in diversity or composition of microbial communities based on radiographic score. We also found that the culture isolates from tracheal lavage samples, as well as other previously reported sea turtle pathogens, were present in variable abundance across sequenced samples. In addition to the tracheal microbial community of live turtles, we characterized microbial communities from other segments of the respiratory tract (glottis, trachea, anterior lung, posterior lung) from deceased turtles. We found a high degree of variability within turtles and a high degree of dissimilarity between different segments of the respiratory tract and the tracheal lavage collected from the same turtle. In summary, we found that the pulmonary microbial community associated with pneumonia in sea turtles is complex and does not correlate well with the microbial community as identified by tracheal lavage. These results underscore the limitations of using tracheal lavage for identification of the causative agents of pneumonia in sea turtles.

13.
Sci Total Environ ; 739: 140176, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32758958

ABSTRACT

Persistent organic pollutants (POP) are toxic substances for wildlife and people. The Kemp's Ridley sea turtle Lepidochelys kempii is an endangered species with limited distribution in the Gulf of Mexico (GM), a marine ecosystem that has been perturbed by a variety of anthropogenic activities. In this work, the concentrations of ten organochlorine pesticides (OP), eight polychlorinated biphenyls (PCB), and atrazine were determined in the plasma of Kemp's Ridley sea turtles that nest in Playa Rancho Nuevo Sanctuary, Tamaulipas, Mexico. Seventy-nine blood samples were collected from female turtles during the 2015-2016 nesting season. Samples were extracted with a focalized ultrasonic sound technique and analyzed through Gas Chromatography coupled to a Mass Spectrometer. POP with the highest percentage of detection were atrazine > PCB 52 > PCB 153 > DDE > alpha endosulfan > DDD > alpha HCH > DDT. There is no linear correlation between the detected POP levels in the Kemp's Ridley sea turtle plasma and its curve carapace length (CCL). When comparing 2015 and 2016 POP concentrations, there were statistically significant differences in atrazine (p < 0.05, R2 = 0.069), PCB 52 (p < 0.05, R2 = 0.0051) and ∑POP (p < 0.05, R2 = 0.0001) and, no statistically significant differences in alpha endosulfan (p < 0.05, R2 = 0.0294), DDE (p < 0.05, R2 = 0.0315) and PCB 153 (p < 0.05, R2 = 0.0036). The reported POP values of this work are one of the few registered for Kemp's Ridley sea turtle in the GM and the first for atrazine levels. These levels were higher than those reported for other sea turtle species from America, Africa, and Europe, which demonstrates a deteriorated health status of the GM marine ecosystem.


Subject(s)
Environmental Pollutants , Turtles , Africa , Animals , Ecosystem , Europe , Female , Gulf of Mexico
14.
J Wildl Dis ; 55(4): 868-873, 2019 10.
Article in English | MEDLINE | ID: mdl-30856047

ABSTRACT

We investigated a method for collecting and processing tear samples from loggerhead (Caretta caretta), green (Chelonia mydas), and Kemp's ridley (Lepidochelys kempii) sea turtles and to identify tear biomarkers and potential differences between unaffected sea turtles and those affected by cold stun syndrome. Tear samples from unaffected and cold-stunned loggerhead, green, and Kemp's ridley sea turtles were collected with sterile, cellulose, latex-free ophthalmic eye spears. We pooled spears to achieve acceptable concentrations, which we extracted and analyzed with proton nuclear magnetic resonance spectroscopy. Using principal components analysis, we identified five tear biomarkers (propylene glycol, glycerol, lactate, formate, and an unidentified metabolite) that distinguished unaffected sea turtles from those with cold stun syndrome. The formate concentration was significantly lower (one-sided, exact, two-sample permutation, P=0.019) in unaffected sea turtles, which is consistent with clinical metabolic acidosis reported in cold-stunned animals. Collection of sufficient sample volume for analysis required multiple spears per sample cohort, but tear sample collection from sea turtles was easy to perform and well tolerated by the animals. Sea turtle tears can be an appropriate sample for some metabolomics research questions.


Subject(s)
Hypothermia/veterinary , Tears/chemistry , Turtles/physiology , Animals , Metabolomics , Proton Magnetic Resonance Spectroscopy , Specimen Handling , Tears/physiology
15.
Ecol Evol ; 8(24): 12656-12669, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619571

ABSTRACT

Animals co-occurring in a region (sympatry) may use the same habitat (syntopy) within that region. A central aim in ecology is determining what factors drive species distributions (i.e., abiotic conditions, dispersal limitations, and/or biotic interactions). Assessing the degree of biotic interactions can be difficult for species with wide ranges at sea. This study investigated the spatial ecology of two sea turtle species that forage on benthic invertebrates in neritic GoM waters: Kemp's ridleys (Lepidochelys kempii) and loggerheads (Caretta caretta). We used satellite tracking and modeled behavioral modes, then calculated individual home ranges, compared foraging areas, and determined extent of co-occurrence. Using six environmental variables and principal component analysis, we assessed similarity of chosen foraging sites. We predicted foraging location (eco-region) based on species, nesting site, and turtle size. For 127 turtles (64 Kemp's ridleys, 63 loggerheads) tracked from 1989 to 2013, foraging home ranges were nine to ten times larger for Kemp's ridleys than for loggerheads. Species intersected off all U.S. coasts and the Yucatán Peninsula, but co-occurrence areas were small compared to species' distributions. Kemp's ridley foraging home ranges were concentrated in the northern GoM, whereas those for loggerheads were concentrated in the eastern GoM. The two species were different in all habitat variables compared (latitude, longitude, distance to shore, net primary production, mean sea surface temperature, and bathymetry). Nesting site was the single dominant variable that dictated foraging ecoregion. Although Kemp's ridleys and loggerheads may compete for resources, the separation in foraging areas, significant differences in environmental conditions, and importance of nesting location on ecoregion selection (i.e., dispersal ability) indicate that adult females of these species do not interact greatly during foraging and that dispersal and environmental factors more strongly determine their distributions. These species show sympatry in this region but evidence for syntopy was rare.

16.
Ecol Evol ; 3(7): 2002-12, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23919146

ABSTRACT

For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998-2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.

SELECTION OF CITATIONS
SEARCH DETAIL