Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Neurobiol Dis ; 181: 106104, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36972791

ABSTRACT

Over the past decade, there has been tremendous progress in understanding brain somatic mosaicism in epilepsy in the research setting. Access to resected brain tissue samples from patients with medically refractory epilepsy undergoing epilepsy surgery has been key to making these discoveries. In this review, we discuss the gap between making discoveries in the research setting and bringing results back to the clinical setting. Current clinical genetic testing mainly uses clinically accessible tissue samples, like blood and saliva, and can detect inherited and de novo germline variants and potentially non-brain-limited mosaic variants that have resulted from post-zygotic mutation (also called "somatic mutations"). Methods developed in the research setting to detect brain-limited mosaic variants using brain tissue samples need to be further translated and validated in the clinical setting, which will allow post-resection brain tissue genetic diagnoses. However, obtaining a genetic diagnosis after surgery for refractory focal epilepsy, when brain tissue samples are available, is arguably "too late" to guide precision management. Emerging methods using cerebrospinal fluid (CSF) and stereoelectroencephalography (SEEG) electrodes hold promise for establishing genetic diagnoses pre-resection without the need for actual brain tissue. In parallel, development of curation rules for interpreting the pathogenicity of mosaic variants, which have unique considerations compared to germline variants, will assist clinically accredited laboratories and epilepsy geneticists in making genetic diagnoses. Returning results of brain-limited mosaic variants to patients and their families will end their diagnostic odyssey and advance epilepsy precision management.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Humans , Mosaicism , Epilepsy/genetics , Epilepsy/surgery , Brain/surgery , Mutation , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/surgery
2.
BMC Bioinformatics ; 22(1): 181, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33832433

ABSTRACT

BACKGROUND: The widespread use of next-generation sequencing has identified an important role for somatic mosaicism in many diseases. However, detecting low-level mosaic variants from next-generation sequencing data remains challenging. RESULTS: Here, we present a method for Position-Based Variant Identification (PBVI) that uses empirically-derived distributions of alternate nucleotides from a control dataset. We modeled this approach on 11 segmental overgrowth genes. We show that this method improves detection of single nucleotide mosaic variants of 0.01-0.05 variant allele fraction compared to other low-level variant callers. At depths of 600 × and 1200 ×, we observed > 85% and > 95% sensitivity, respectively. In a cohort of 26 individuals with somatic overgrowth disorders PBVI showed improved signal to noise, identifying pathogenic variants in 17 individuals. CONCLUSION: PBVI can facilitate identification of low-level mosaic variants thus increasing the utility of next-generation sequencing data for research and diagnostic purposes.


Subject(s)
High-Throughput Nucleotide Sequencing , Nucleotides , Alleles , Cohort Studies , Humans , Nucleotides/genetics , Software
3.
Clin Exp Nephrol ; 21(5): 877-883, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27796712

ABSTRACT

BACKGROUND: X-linked Alport syndrome (XLAS) is a progressive, hereditary nephropathy. Although males with XLAS usually develop end-stage renal disease before 30 years of age, some men show a milder phenotype and possess somatic mosaic variants of the type IV collagen α5 gene (COL4A5), with severity depending on variant frequencies. In females, somatic mosaic variants are rarely reported in XLAS, and it is not clear what determines severity. METHODS: Two females with somatic mosaic mutations in COL4A5 with variant frequencies of 17.9 and 22.1% were detected using the next-generation sequencing. One patient only had hematuria. The other, however, had moderate proteinuria, which is a severe phenotype for a female XLAS patient of her age. The molecular mechanisms for the severe phenotype were investigated by examining variant frequencies in urinary sediment cells and X chromosome inactivation patterns, and by looking for modifier variants in podocyte-related genes using the next-generation sequencing. RESULTS: The severe phenotype patient had a variant frequency of 36.6% in urinary sediment cells, which is not markedly high, nor did she show skewed X chromosome inactivation. However, she did have the heterozygous variant in COL4A3, which can affect severity. CONCLUSION: Factors determining severity in female XLAS patients remain unclear. One studied patient with the somatic variant in COL4A5 showed a severe phenotype without skewed X chromosome inactivation, which might be derived from digenic variants in COL4A3 and COL4A5. Further studies are required to determine molecular mechanisms behind female XLAS resulting in the severe phenotype.


Subject(s)
Chromosomes, Human, X , Collagen Type IV/genetics , Mosaicism , Mutation , Nephritis, Hereditary/genetics , Adult , Child , DNA Mutational Analysis , Female , Genes, Modifier , Genetic Predisposition to Disease , Hematuria/genetics , Heredity , High-Throughput Nucleotide Sequencing , Humans , Mutation Rate , Nephritis, Hereditary/diagnosis , Pedigree , Phenotype , Proteinuria/genetics , Severity of Illness Index , X Chromosome Inactivation
4.
Front Cell Dev Biol ; 12: 1415258, 2024.
Article in English | MEDLINE | ID: mdl-39144255

ABSTRACT

Background: Tuberous sclerosis is a multi-system disorder caused by mutations in either TSC1 or TSC2. The majority of affected patients (85%-90%) have heterozygous variants, and a smaller number (around 5%) have mosaic variants. Despite using various techniques, some patients still have "no mutation identified" (NMI). Methods: We hypothesized that the causal variants of patients with NMI may be structural variants or deep intronic variants. To investigate this, we sequenced the DNA of 26 tuberous sclerosis patients with NMI using targeted long-read sequencing. Results: We identified likely pathogenic/pathogenic variants in 13 of the cases, of which 6 were large deletions, four were InDels, two were deep intronic variants, one had retrotransposon insertion in either TSC1 or TSC2, and one was complex rearrangement. Furthermore, there was a de novo Alu element insertion with a high suspicion of pathogenicity that was classified as a variant of unknown significance. Conclusion: Our findings expand the current knowledge of known pathogenic variants related to tuberous sclerosis, particularly uncovering mosaic complex structural variations and retrotransposon insertions that have not been previously reported in tuberous sclerosis. Our findings suggest a higher prevalence of mosaicism among tuberous sclerosis patients than previously recognized. Our results indicate that long-read sequencing is a valuable approach for tuberous sclerosis cases with no mutation identified (NMI).

5.
Fam Cancer ; 21(1): 79-83, 2022 01.
Article in English | MEDLINE | ID: mdl-33683519

ABSTRACT

In addition to classic germline APC gene variants, APC mosaicism and deep intronic germline APC variants have also been reported to be causes of adenomatous polyposis. In this study, we investigated 80 unexplained colorectal polyposis patients without germline pathogenic variants in known polyposis predisposing genes to detect mosaic and deep intronic APC variants. All patients developed more than 50 colorectal polyps, with adenomas being predominantly observed. To detect APC mosaicism, we performed next-generation sequencing (NGS) in leukocyte DNA. Furthermore, using Sanger sequencing, the cohort was screened for the following previously reported deep intronic pathogenic germline APC variants: c.1408 + 731C > T, p.(Gly471Serfs*55), c.1408 + 735A > T, p.(Gly471Serfs*55), c.1408 + 729A > G, p.(Gly471Serfs*55) and c.532-941G > A, p.(Phe178Argfs*22). We did not detect mosaic or intronic APC variants in the screened unexplained colorectal polyposis patients. The results of this study indicate that the deep intronic APC variants investigated in this study are not a cause of colorectal polyposis in this Dutch population. In addition, NGS did not detect any further mosaic variants in our cohort.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli , Colorectal Neoplasms , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Colorectal Neoplasms/genetics , Genes, APC , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Mutation
6.
J Neurol Sci ; 443: 120498, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36417806

ABSTRACT

OBJECTIVE: In a study using a mouse model of CDKL5 deficiency disorder (CDD), seizures are specific to female mice heterozygous for Cdkl5 mutations and not observed in hemizygous knockout males or homozygous knockout females. The aim of this study was to examine whether the clinical phenotype of patients with CDD can be impacted by the type of genetic variant. METHODS: Eleven CDD patients (six females and five males) were included in this study. The molecular diagnosis of hemizygous male patients was performed using digital PCR and their clinical phenotypes were compared with those of patients with mosaic or heterozygous CDKL5 variants. The severity of clinical phenotypes was graded by using CDKL5 Developmental Score and the adapted version of the CDKL5 Clinical Severity Assessment. The effect of cellular mosaicism on the severity of CDD was studied by comparing the clinical characteristics and comorbidities between individuals with hemizygous and mosaic or heterozygous CDKL5 variants. RESULTS: One of the five male patients was mosaic for the CDKL5 variant. All patients developed seizures irrespective of their genetic status of the pathogenic variant. However, cellular mosaicism of CDKL5 deficiency was associated with lesser severity of other comorbidities such as feeding, respiratory, and visual functional impairments. SIGNIFICANCE: This study provided evidence that cellular mosaicism of CDKL5 deficiency was not necessarily required for developing epilepsy. CDD patients not only exhibited clinical features of epilepsy but also exhibited the developmental consequences arising directly from the effect of the CDKL5 pathogenic variant.


Subject(s)
Epilepsy , Spasms, Infantile , Female , Male , Humans , Mosaicism , Seizures/genetics , Spasms, Infantile/genetics , Protein Serine-Threonine Kinases/genetics
7.
Mol Genet Genomic Med ; 9(10): e1802, 2021 10.
Article in English | MEDLINE | ID: mdl-34480426

ABSTRACT

BACKGROUND: Fetal cardiac rhabdomyoma (CR) is strongly associated with tuberous sclerosis complex (TSC), which is caused by variants in TSC1 and TSC2. However, in 10%-15% of patients with clinically confirmed TSC, no TSC1/TSC2 variants are identified by panel sequencing or multiplex ligation-dependent probe amplification (MLPA). METHODS: We analyzed eight fetuses with CR and their families. No TSC1/TSC2 variants had previously been identified for six of these fetuses, and we suspected the other two families of gonadal mosaicism. We performed next-generation sequencing (NGS) using CR tissue, umbilical cord tissue, and parental blood. All positive results, involving two paternal semen, were verified by droplet digital polymerase chain reaction (ddPCR). RESULTS: Four fetuses carried low-level mosaic variants (0.05%-14.89%), and two only exhibited somatic mosaic variants in the CR tissue (15.76% and 37.69%). Two fathers had gonadal mosaicism (9.07% and 4.86%). We identified nine pathogenic variants in eight fetuses, including one fetus with a second-hit variant. CONCLUSION: The fetuses assessed in this study carried low-level and somatic mosaic variants, and CR tissue from one fetus exhibited a second-hit variant. Heterozygous gonadal variants can exist in patients with low-level mosaicism. Combining NGS with ddPCR improves the accuracy of prenatal TSC diagnosis.


Subject(s)
Heart Neoplasms/diagnosis , Heart Neoplasms/genetics , Mosaicism , Rhabdomyoma/diagnosis , Rhabdomyoma/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/genetics , Adult , Alleles , Echocardiography , Female , Fetus , Genetic Association Studies , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Pregnancy , Prenatal Diagnosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL