Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Exp Brain Res ; 235(8): 2425-2436, 2017 08.
Article in English | MEDLINE | ID: mdl-28500456

ABSTRACT

Sex is an important physiological variable of behavior, but its effect on motor control remains poorly understood. Some evidence suggests that women exhibit greater variability during constant contractions and poorer accuracy during goal-directed tasks. However, it remains unclear whether motor output variability or altered muscle activation impairs accuracy in women. Here, we examine sex differences in endpoint accuracy during ankle goal-directed movements and the activity of the antagonistic muscles. Ten women (23.1 ± 5.1 years) and 10 men (23 ± 3.7 years) aimed to match a target (9° in 180 ms) with ankle dorsiflexion. Participants performed 50 trials and we recorded the endpoint accuracy and the electromyographic (EMG) activity of the primary agonist (Tibialis Anterior; TA) and antagonist (Soleus; SOL) muscles. Women exhibited greater spatial inaccuracy (Position error: t = -2.65, P = 0.016) but not temporal inaccuracy relative to men. The motor output variability was similar for the two sexes (P > 0.2). The spatial inaccuracy in women was related to greater variability in the coordination of the antagonistic muscles (R 2 0.19, P = 0.03). These findings suggest that women are spatially less accurate than men during fast goal-directed movements likely due to an altered activation of the antagonistic muscles.


Subject(s)
Evoked Potentials, Motor/physiology , Movement/physiology , Muscle, Skeletal/physiology , Sex Characteristics , Space Perception/physiology , Adolescent , Adult , Ankle/innervation , Electromyography , Feedback, Physiological , Female , Goals , Humans , Male , Muscle Contraction/physiology , Psychomotor Performance/physiology , Young Adult
2.
Somatosens Mot Res ; 34(2): 96-101, 2017 06.
Article in English | MEDLINE | ID: mdl-28423977

ABSTRACT

Older adults are more variable than young adults on tasks that demand the simultaneous control of more than one effector, and the difference between age groups may be related to their different capacity of coordinating the force output of the involved effectors. The goal of this study was to determine whether age-associated differences in motor output variability during tasks involving the simultaneous dorsiflexion of two feet can be partially explained by differences in coordination and possibly attenuated by physical training. Ten young and 22 old adults (10 trained and 12 untrained old adults) volunteered to participate in the study. Trained older adults had experience in a high-intensity mixed modality training (MMT) regime for a minimum of 1 year. Volunteers performed successive trials of a constant force task and a goal-directed task, with and without visual feedback. Within- and between-trial variability were calculated and coordination was quantified using the uncontrolled manifold (UCM) approach (i.e., co-variation of the force outputs of both feet were used to quantify a motor synergy index). Older adults exhibited greater variability and lower synergy (p < .05), independently of physical training status, than young adults. Removal of visual feedback caused greater variability and lower synergy for all groups (p < .05). Our results suggest that older adults exhibit greater motor output variability in tasks involving the simultaneous dorsiflexion of both feet possibly due to a lack of coordination between the feet.


Subject(s)
Aging/physiology , Psychomotor Performance/physiology , Adult , Age Factors , Aged , Feedback, Sensory , Female , Foot , Humans , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology
3.
Lasers Med Sci ; 31(7): 1325-32, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27305924

ABSTRACT

Photobiomodulation (PBM) therapy has been implicated as an effective ergogenic aid to delay the onset of muscle fatigue. The purpose of this study was to examine the dose-response ergogenic properties of PBM therapy and its ability to prolong time to task failure by enhancing muscle activity and delaying the onset of muscle fatigue using a static positioning task. Nine participants (24.3 ± 4.9 years) received three doses of near-infrared (NIR) light therapy randomly on three separate sessions (sham, 240, and 480 J). For the positioning task, participants held a 30 % one-repetition maximum (1-RM) load using the index finger until volitional fatigue. Surface electromyography (sEMG) of the first dorsal interosseous muscle was recorded for the length of the positioning task. Outcomes included time to task failure (TTF), muscle fatigue, movement accuracy, motor output variability, and muscle activity (sEMG). The 240-J dose significantly extended TTF by 26 % (p = 0.032) compared with the sham dose. TTF for the 240-J dose was strongly associated with a decrease in muscle fatigue (R (2) = 0.54, p = 0.024). Our findings show that a 240-J dose of NIR light therapy is efficacious in delaying the onset and extent of muscle fatigue during submaximal isometric positioning tasks. Our findings suggest that NIR light therapy may be used as an ergogenic aid during functional tasks or post-injury rehabilitation.


Subject(s)
Low-Level Light Therapy/methods , Muscle Fatigue/radiation effects , Muscle, Skeletal/radiation effects , Adult , Cross-Over Studies , Double-Blind Method , Electromyography , Female , Humans , Male , Muscle Fatigue/physiology , Muscle, Skeletal/physiology
4.
Disabil Rehabil ; 43(14): 1948-1954, 2021 07.
Article in English | MEDLINE | ID: mdl-31691641

ABSTRACT

PURPOSE: Precise control of a car steering wheel requires adequate motor capability. Deficits in grip strength and force control after stroke could influence the ability steer a car. Our study aimed to determine the impact of stroke on car steering and identify the relative contribution of grip strength and grip force control to steering performance. METHODS: Twelve chronic stroke survivors and 12 controls performed three gripping tasks with each hand: maximum voluntary contraction, dynamic force tracking, and steering a car on a winding road in a simulated driving environment. We quantified grip strength, grip force variability, and deviation of the car from the center of the lane. RESULTS: The paretic hand exhibited reduced grip strength, increased grip force variability, and increased lane deviation compared with the non-dominant hand in controls. Grip force variability, but not grip strength, significantly predicted (R2 = 0.49, p < 0.05) lane deviation with the paretic hand. CONCLUSION: Stroke impairs the steering ability of the paretic hand. Although grip strength and force control of the paretic hand are diminished after stroke, only grip force control predicts steering accuracy. Deficits in grip force control after stroke contribute to functional limitations in performing skilled tasks with the paretic hand.Implications for rehabilitationDriving is an important goal for independent mobility after stroke that requires motor capability to manipulate hand and foot controls.Two prominent stroke-related motor impairments that may impact precise car steering are reduced grip strength and grip force control.In individuals with mild-moderate impairments, deficits in grip force modulation rather than grip strength contribute to compromised steering performance with the paretic hand.We recommend that driving rehabilitation should consider re-educating grip force modulation for successful driving outcomes post stroke.


Subject(s)
Stroke Rehabilitation , Stroke , Automobiles , Hand , Hand Strength , Humans , Stroke/complications
5.
Front Hum Neurosci ; 11: 87, 2017.
Article in English | MEDLINE | ID: mdl-28303096

ABSTRACT

Motor variability is an inherent feature of all human movements, and describes the system's stability and rigidity during the performance of functional motor tasks such as balancing. In order to ensure successful task execution, the nervous system is thought to be able to flexibly select the appropriate level of variability. However, it remains unknown which neurophysiological pathways are utilized for the control of motor output variability. In responding to natural variability (in this example sway), it is plausible that the neuro-physiological response to muscular elongation contributes to restoring a balanced upright posture. In this study, the postural sway of 18 healthy subjects was observed while their visual and mechano-sensory system was perturbed. Simultaneously, the contribution of Ia-afferent information for controlling the motor task was assessed by means of H-reflex. There was no association between postural sway and Ia-afference in the eyes open condition, however up to 4% of the effects of eye closure on the magnitude of sway can be compensated by increased reliance on Ia-afference. Increasing the biomechanical demands by adding up to 40% bodyweight around the trunk induced a specific sway response, such that the magnitude of sway remained unchanged but its dynamic structure became more regular and stable (by up to 18%). Such regular sway patterns have been associated with enhanced cognitive involvement in controlling motor tasks. It therefore appears that the nervous system applies different control strategies in response to the perturbations: The loss of visual information is compensated by increased reliance on other receptors; while the specific regular sway pattern associated with additional weight-bearing was independent of Ia-afferent information, suggesting the fundamental involvement of supraspinal centers for the control of motor output variability.

6.
Front Hum Neurosci ; 11: 548, 2017.
Article in English | MEDLINE | ID: mdl-29176947

ABSTRACT

Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

7.
J Gerontol A Biol Sci Med Sci ; 71(12): 1676-1681, 2016 12.
Article in English | MEDLINE | ID: mdl-26935111

ABSTRACT

BACKGROUND: The functional declines with aging relate to deficits in motor control and strength. In this study, we determine whether older adults exhibit impaired driving as a consequence of declines in motor control or strength. METHODS: Young and older adults performed the following tasks: (i) maximum voluntary contractions of ankle dorsiflexion and plantarflexion; (ii) sinusoidal tracking with isolated ankle dorsiflexion; and (iii) a reactive driving task that required responding to unexpected brake lights of the car ahead. We quantified motor control with ankle force variability, gas position variability, and brake force variability. We quantified reactive driving performance with a combination of gas pedal error, premotor and motor response times, and brake pedal error. RESULTS: Reactive driving performance was ~30% more impaired (t = 3.38; p < .01) in older adults compared with young adults. Older adults exhibited greater motor output variability during both isolated ankle dorsiflexion contractions (t = 2.76; p < .05) and reactive driving (gas pedal variability: t = 1.87; p < .03; brake pedal variability: t = 4.55; p < .01). Deficits in reactive driving were strongly correlated to greater motor output variability (R 2 = .48; p < .01) but not strength (p > .05). CONCLUSIONS: This study provides novel evidence that age-related declines in motor control but not strength impair reactive driving. These findings have implications on rehabilitation and suggest that interventions should focus on improving motor control to enhance driving-related function in older adults.


Subject(s)
Aging/physiology , Ankle Joint/physiology , Automobile Driving , Geriatric Assessment/methods , Motor Skills/physiology , Reaction Time/physiology , Aged , Feedback, Sensory/physiology , Female , Humans , Male , Task Performance and Analysis , Young Adult
8.
Front Hum Neurosci ; 8: 823, 2014.
Article in English | MEDLINE | ID: mdl-25374524

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder defined by motor impairments that include rigidity, systemic slowdown of movement (bradykinesia), postural problems, and tremor. While the progressive decline in motor output functions is well documented, less understood are impairments linked to the continuous kinesthetic sensation emerging from the flow of motions. There is growing evidence in recent years that kinesthetic problems are also part of the symptoms of PD, but objective methods to readily quantify continuously unfolding motions across different contexts have been lacking. Here we present evidence from a deafferented subject (IW) and a new statistical platform that enables new analyses of motor output variability measured as a continuous flow of kinesthetic reafferent input. Systematic increasing similarities between the patterns of motor output variability in IW and the participants with increasing degrees of PD severity suggest potential deficits in kinesthetic sensing in PD. We propose that these deficits may result from persistent, noisy, and random motor patterns as the disorder progresses. The stochastic signatures from the unfolding motions revealed levels of noise in the motor output fluctuations of these patients bound to decrease the kinesthetic signal's bandwidth. The results are interpreted in light of the concept of kinesthetic reafference ( Von Holst and Mittelstaedt, 1950). In this context, noisy motor output variability from voluntary movements in PD leads to a returning stream of noisy afference caused, in turn, by those faulty movements themselves. Faulty efferent output re-enters the CNS as corrupted sensory motor input. We find here that severity level in PD leads to the persistence of such patterns, thus bringing the statistical signatures of the subjects with PD systematically closer to those of the subject without proprioception.

SELECTION OF CITATIONS
SEARCH DETAIL