ABSTRACT
P19 pluripotent embryonic carcinoma (EC) stem cells are derived from pluripotent germ cell tumours and can differentiate into three germ layers. Treatment of these cells in suspension culture with retinoic acid induces their differentiation into neurons and glial cells. Hence, these cells are an excellent in vitro model to study the transition from the upper blastoderm to the neuroectoderm. However, because of the complex nature of the techniques involved, the results are highly dependent on the skills of the experimenter. Herein, we developed a simple method to induce neuronal differentiation of adherent P19 EC cells in TaKaRa NDiff® 227 serum-free medium (originally N2B27 medium). This medium markedly induced neuronal differentiation of P19 EC cells. The addition of retinoic acid to the NDiff® 227 medium further enhanced differentiation. Furthermore, cells differentiated by the conventional method, as well as the new method, showed identical expression of the mature neuronal marker, neuronal nuclei. To determine whether our approach could be applied for neuronal studies, we measured histone deacetylase 8 (HDAC8) activity using an HDAC8 inhibitor and HDAC8-knockout P19 EC cells. Inhibition of HDAC8 activity suppressed neuronal maturation. Additionally, HDAC8-knockout cell lines showed immature differentiation compared to the wild-type cell line. These results indicate that HDAC8 directly regulates the neuronal differentiation of P19 EC cells. Thus, our method involving P19 EC cells can be used as an experimental system to study the nervous system. Moreover, this method is suitable for screening drugs that affect the nervous system and cell differentiation.
Subject(s)
Histone Deacetylases/metabolism , Neurogenesis , Animals , Cell Line, Tumor , Embryoid Bodies , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Mice, Inbred C3H , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Triazoles/pharmacologyABSTRACT
OBJECTIVE: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. METHODS: The BM-MSCs have been differentiated into pancreatic ß-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. RESULTS: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic ß-like cells in the N2B27-based media than in the ADMEM-based media. CONCLUSION: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic ß-like cells.
ABSTRACT
Whole embryo culture (WEC) of postimplantation rodent embryos is widely used for the study of mammalian embryogenesis and developmental toxicity testing. Its major advantage is that it allows direct access to embryos for experimental manipulations and the monitoring of their consequences that would otherwise not be possible or technically difficult to perform in utero. However, a major drawback of mammalian WEC is that the culture media currently in use display batch variations and are undefined, as they contain serum or serum replacements of unknown composition. Moreover, these media possess cell-signalling activities important for embryogenesis. Therefore, reproducibility of mammalian postimplantation WEC results may be affected by batch variation and their interpretation is complicated because the experimenter is unsure whether the embryo response to experimental perturbations is solely due to their action, or modified as a result of influences from undefined substances/signaling activities present in culture media. To alleviate these problems we investigated whether N2B27, a serum-free and defined medium, can support the in vitro development of postimplantation mammalian embryos. We show that N2B27 allows pre-gastrulation mouse embryos isolated at embryonic day 5.5 to develop to advanced gastrulation, reaching the mid- and late primitive streak stages. This is the first demonstration that postimplantation mammalian embryos can develop in vitro in a defined medium in the absence of serum and provides a novel WEC system for studying developmental mechanisms and testing for developmental toxicity during the early postimplantation period.
Subject(s)
Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Embryonic Development/physiology , Animals , Culture Media, Serum-Free/chemistry , Culture Media, Serum-Free/metabolism , Gastrulation/physiology , Mice , Mice, Inbred ICRABSTRACT
Ungulate embryos undergo critical cell differentiation and proliferation events around and after blastocyst hatching. Failures in these processes lead to early pregnancy losses, which generate an important economic impact on farming. Conventional embryo culture media, such as SOF, are unable to support embryo development beyond hatching. In contrast, N2B27 medium supports early post-hatching development, evidencing a swift in embryonic nutritional requirements during this developmental window. Here, we investigate if earlier exposure to N2B27 could improve embryo development after hatching. Embryo culture in N2B27 from day (D) 5, 6 or 7 significantly enhanced complete hypoblast migration (>45 vs. â¼24%) and epiblast development into an embryonic disc (ED)-like structure at D12 (>40 vs. 23%), compared to embryos cultured in SOF up to D9. Culture in N2B27 from D5 significantly increased epiblast and hypoblast cell number in D8 blastocysts, but post-hatching embryos cultured in N2B27 from D5 or 6 frequently showed a disorganized distribution of epiblast cells. In conclusion, bovine embryo culture in N2B27 from D7 onwards improves subsequent post-hatching development. This improved fully in vitro system will be very useful to functionally explore cell differentiation mechanisms and the bases of early pregnancy failures without requiring animal experimentation.
Subject(s)
Abortion, Veterinary , Cattle Diseases , Pregnancy , Female , Cattle , Animals , Blastocyst/physiology , Embryo, Mammalian , Parturition , Cell Differentiation , Embryonic Development/physiology , Embryo Culture Techniques/veterinary , Fertilization in Vitro/veterinaryABSTRACT
BACKGROUND: Neural differentiation from embryonic stem cells (ESCs) is an excellent model for elucidating the key mechanisms involved in neurogenesis, and also provides an unlimited source of progenitors for cell-based nerve regeneration. However, the existing protocols such as small molecule substances, 3D matrix, co-culture technique and transgenic method, are complicated and difficult to operate, thus are limited by laboratory conditions. Looking for an easy-to-operate protocol with easily gained material and high induction efficiency has always been a hot issue in neuroscience research. NEW METHODS: This paper established an optimized method for embryonic neurogenesis using a strategy of "combinatorial screening". In our study, the whole process of embryonic neurogenesis was divided into two phases, and the differentiation efficiency of seven experimental protocols in phase I and three protocols in phase II were systematically evaluated in A2lox and 129 ESCs. RESULTS: In phase I differentiation, "2-day embryoid bodies formation + 6-day retinoic acid induction" (Phase I-protocol 3) could effectively induce the differentiation of ESCs into neural precursor cells (NPCs). Furthermore, in phase II, N2B27 medium II (Phase II-protocol 3) could better support the subsequent differentiation from NPCs into neurons. COMPARISON WITH EXISTING METHOD(S): Such a combinational method (phase I-protocol 3 and phase II-protocol 3) can realize embryonic neurogenesis with high efficiency, easy implementation and low-cost, and is suitable for promotion in most laboratories. CONCLUSIONS: Through "combinatorial screening" strategy, we established an optimized method for embryonic neurogenesis in vitro, which is expected to be a powerful tool for neuroscience research.