Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 494
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; : e2405781, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370581

ABSTRACT

The activated M1-like microglia induced neuroinflammation is the critical pathogenic event in Alzheimer's disease (AD). Microglial polarization from pro-inflammatory M1 toward anti-inflammatory M2 phenotype is a promising strategy. To efficiently accomplish this, amyloid-ß (Aß) aggregates as the culprit of M1 microglia activation should be uprooted. Interestingly, this study finds out that the self-reassembly of curcumin molecules into carrier-free curcumin nanoparticles (CNPs) exhibits multivalent binding with Aß to achieve higher inhibitory effect on Aß aggregation, compared to free curcumin with monovalent effect. Based on this, the CNPs loaded cardiolipin liposomes are developed for efficient microglial polarization. After intranasal administration, the liposomes decompose to release CNPs and cardiolipin in response to AD oxidative microenvironment. The CNPs inhibit Aß aggregation and promote Aß phagocytosis/clearance in microglia, removing roadblock to microglial polarization. Subsequently, CNPs are endocytosed by microglia and inhibit TLR4/NF-κB pathway for microglia polarization (M1→M2). Meanwhile, cardiolipin is identified as signaling molecule to normalize microglial dysfunction to prevent pro-inflammatory factors release. In AD transgenic mice, neuroinflammation, Aß burden, and memory deficits are relieved after treatment. Through combined attack by extracellularly eradicating roadblock of Aß aggregation and intracellularly inhibiting inflammation-related pathways, this nanotechnology assisted delivery system polarizes microglia efficiently, providing a reliable strategy in AD treatment.

2.
Small ; : e2402141, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953313

ABSTRACT

Abdominal aortic aneurysm (AAA) represents a critical cardiovascular condition characterized by localized dilation of the abdominal aorta, carrying a significant risk of rupture and mortality. Current treatment options are limited, necessitating novel therapeutic approaches. This study investigates the potential of a pioneering nanodrug delivery system, RAP@PFB, in mitigating AAA progression. RAP@PFB integrates pentagalloyl glucose (PGG) and rapamycin (RAP) within a metal-organic-framework (MOF) structure through a facile assembly process, ensuring remarkable drug loading capacity and colloidal stability. The synergistic effects of PGG, a polyphenolic antioxidant, and RAP, an mTOR inhibitor, collectively regulate key players in AAA pathogenesis, such as macrophages and smooth muscle cells (SMCs). In macrophages, RAP@PFB efficiently scavenges various free radicals, suppresses inflammation, and promotes M1-to-M2 phenotype repolarization. In SMCs, it inhibits apoptosis and calcification, thereby stabilizing the extracellular matrix and reducing the risk of AAA rupture. Administered intravenously, RAP@PFB exhibits effective accumulation at the AAA site, demonstrating robust efficacy in reducing AAA progression through multiple mechanisms. Moreover, RAP@PFB demonstrates favorable biosafety profiles, supporting its potential translation into clinical applications for AAA therapy.

3.
Chemistry ; 30(28): e202400021, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38477386

ABSTRACT

The development of novel and effective drug delivery systems aimed at enhancing therapeutic profile and efficacy of therapeutic agents is a critical challenge in modern medicine. This study presents an intelligent drug delivery system based on self-assembled two-dimensional peptide nanosheets (2D PNSs). Leveraging the tunable properties of amino acid structures and sequences, we design a peptide with the sequence of Fmoc-FKKGSHC, which self-assembles into 2D PNSs with uniform structure, high biocompatibility, and excellent degradability. Covalent attachment of thiol-modified doxorubicin (DOX) drugs to 2D PNSs via disulfide bond results in the peptide-drug conjugates (PDCs), which is denoted as PNS-SS-DOX. Subsequently, the PDCs are encapsulated within the injectable, thermosensitive chitosan (CS) hydrogels for drug delivery. The designed drug delivery system demonstrates outstanding pH-responsiveness and sustained drug release capabilities, which are facilitated by the characteristics of the CS hydrogels. Meanwhile, the covalently linked disulfide bond within the PNS-SS-DOX is responsive to intracellular glutathione (GSH) within tumor cells, enabling controlled drug release and significantly inhibiting the cancer cell growth. This responsive peptide-drug conjugate based on a 2D peptide nanoplatform paves the way for the development of smart drug delivery systems and has bright prospects in the future biomedicine field.


Subject(s)
Chitosan , Doxorubicin , Drug Liberation , Glutathione , Hydrogels , Nanostructures , Peptides , Hydrogels/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Chitosan/chemistry , Glutathione/chemistry , Peptides/chemistry , Humans , Nanostructures/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Hydrogen-Ion Concentration
4.
Mol Pharm ; 21(7): 3577-3590, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38857525

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by high malignancy and limited treatment options. Given the pressing need for more effective treatments for TNBC, this study aimed to develop platelet membrane (PM)-camouflaged silver metal-organic framework nanoparticles (PM@MOF-Ag NPs), a biomimetic nanodrug. PM@MOF-Ag NP construction involved the utilization of 2-methylimidazole and silver nitrate to prepare silver metal-organic framework (MOF-Ag) NPs. The PM@MOF-Ag NPs, due to their camouflage, possess excellent blood compatibility, immune escape ability, and a strong affinity for 4T1 tumor cells. This enhances their circulation time in vivo and promotes the aggregation of PM@MOF-Ag NPs at the 4T1 tumor site. Importantly, PM@MOF-Ag NPs demonstrated promising antitumor activity in vitro and in vivo. We further revealed that PM@MOF-Ag NPs induced tumor cell death by overproducing reactive oxygen species and promoting cell apoptosis. Moreover, PM@MOF-Ag NPs enhanced apoptosis by upregulating the ratios of Bax/Bcl-2 and cleaved caspase3/pro-caspase3. Notably, PM@MOF-Ag NPs exhibited no significant organ toxicity, whereas the administration of MOF-Ag NPs resulted in liver inflammation compared to the control group.


Subject(s)
Apoptosis , Metal Nanoparticles , Metal-Organic Frameworks , Reactive Oxygen Species , Silver , Triple Negative Breast Neoplasms , Metal-Organic Frameworks/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Female , Silver/chemistry , Mice , Apoptosis/drug effects , Cell Line, Tumor , Metal Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Humans , Mice, Inbred BALB C , Blood Platelets/drug effects , Blood Platelets/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetics/methods , Xenograft Model Antitumor Assays , Nanoparticles/chemistry
5.
Pharmacol Res ; 201: 107100, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341055

ABSTRACT

The development of natural products for potential new drugs faces obstacles such as unknown mechanisms, poor solubility, and limited bioavailability, which limit the broadened applicability of natural products. Therefore, there is a need for advanced pharmaceutical formulations of active compounds or natural products. In recent years, novel nano-drug delivery systems (NDDS) for natural products, including nanosuspensions, nanoliposomes, micelle, microemulsions/self-microemulsions, nanocapsules, and solid lipid nanoparticles, have been developed to improve solubility, bioavailability, and tissue distribution as well as for prolonged retention and enhanced permeation. Here, we updated the NDDS delivery systems used for natural products with the potential enhancement in therapeutic efficiency observed with nano-delivery systems.


Subject(s)
Biological Products , Drug Delivery Systems , Nanoparticle Drug Delivery System , Biological Availability
6.
Environ Res ; 242: 117795, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38043894

ABSTRACT

The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.


Subject(s)
Cardiovascular Diseases , Nanoparticles , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/therapy , Nanomedicine/methods , Drug Delivery Systems , Nanotechnology
7.
J Nanobiotechnology ; 22(1): 523, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215361

ABSTRACT

Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.


Subject(s)
Arrhythmias, Cardiac , Biocompatible Materials , Nanostructures , Humans , Arrhythmias, Cardiac/therapy , Animals , Nanostructures/therapeutic use , Nanostructures/chemistry , Biocompatible Materials/chemistry , Drug Delivery Systems , Nanotechnology/methods , Tissue Engineering/methods , Anti-Arrhythmia Agents/therapeutic use
8.
J Nanobiotechnology ; 22(1): 35, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243224

ABSTRACT

BACKGROUND: Most patients with ovarian cancer (OC) treated with platinum-based chemotherapy have a dismal prognosis owing to drug resistance. However, the regulatory mechanisms of circular RNA (circRNA) and p53 ubiquitination are unknown in platinum-resistant OC. We aimed to identify circRNAs associated with platinum-resistant OC to develop a novel treatment strategy. METHODS: Platinum-resistant circRNAs were screened through circRNA sequencing and validated using quantitative reverse-transcription PCR in OC cells and tissues. The characteristics of circNUP50 were analysed using Sanger sequencing, oligo (dT) primers, ribonuclease R and fluorescence in situ hybridisation assays. Functional experimental studies were performed in vitro and in vivo. The mechanism underlying circNUP50-mediated P53 ubiquitination was investigated through circRNA pull-down analysis and mass spectrometry, luciferase reporters, RNA binding protein immunoprecipitation, immunofluorescence assays, cycloheximide chase assays, and ubiquitination experiments. Finally, a platinum and si-circNUP50 co-delivery nanosystem (Psc@DPP) was constructed to treat platinum-resistant OC in an orthotopic animal model. RESULTS: We found that circNUP50 contributes to platinum-resistant conditions in OC by promoting cell proliferation, affecting the cell cycle, and reducing apoptosis. The si-circNUP50 mRNA sequencing and circRNA pull-down analysis showed that circNUP50 mediates platinum resistance in OC by binding p53 and UBE2T, accelerating p53 ubiquitination. By contrast, miRNA sequencing and circRNA pull-down experiments indicated that circNUP50 could serve as a sponge for miR-197-3p, thereby upregulating G3BP1 to mediate p53 ubiquitination, promoting OC platinum resistance. Psc@DPP effectively overcame platinum resistance in an OC tumour model and provided a novel idea for treating platinum-resistant OC using si-circNUP50. CONCLUSIONS: This study reveals a novel molecular mechanism by which circNUP50 mediates platinum resistance in OC by modulating p53 ubiquitination and provides new insights for developing effective therapeutic strategies for platinum resistance in OC.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Ubiquitin-Conjugating Enzymes , Animals , Humans , Female , Cisplatin/pharmacology , Cisplatin/therapeutic use , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Cell Line, Tumor , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/therapeutic use , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ubiquitination , Cell Proliferation , Drug Resistance, Neoplasm
9.
J Nanobiotechnology ; 22(1): 122, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504208

ABSTRACT

Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.


Subject(s)
Breast Neoplasms , Flavanones , Nanoparticles , Humans , Mice , Animals , Female , Breast Neoplasms/pathology , Zebrafish/metabolism , Receptors, Estrogen/metabolism , Estrogens/metabolism , Estrogens/therapeutic use , Tamoxifen/pharmacology , Estradiol/pharmacology , Liver/metabolism
10.
BMC Pulm Med ; 24(1): 159, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561695

ABSTRACT

Cisplatin (DDP) resistance, often leading to first-line chemotherapy failure in non-small cell lung cancer (NSCLC), poses a significant challenge. MiR-219a-5p has been reported to enhance the sensitivity of human NSCLC to DDP. However, free miR-219a-5p is prone to degradation by nucleases in the bloodstream, rendering it unstable. In light of this, our study developed an efficient nanodrug delivery system that achieved targeted delivery of DDP and miR-219a-5p by modifying liposomes with folate (FA). Based on the results of material characterization, we successfully constructed a well-dispersed and uniformly sized (approximately 135.8 nm) Lipo@DDP@miR-219a-5p@FA nanodrug. Agarose gel electrophoresis experiments demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited good stability in serum, effectively protecting miR-219a-5p from degradation. Immunofluorescence and flow cytometry experiments revealed that, due to FA modification, Lipo@DDP@miR-219a-5p@FA could specifically bind to FA receptors on the surface of tumor cells (A549), thus enhancing drug internalization efficiency. Safety evaluations conducted in vitro demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited no significant toxicity to non-cancer cells (BEAS-2B) and displayed excellent blood compatibility. Cellular functional experiments, apoptosis assays, and western blot demonstrated that Lipo@DDP@miR-219a-5p@FA effectively reversed DDP resistance in A549 cells, inhibited cell proliferation and migration, and further promoted apoptosis. In summary, the Lipo@DDP@miR-219a-5p@FA nanodrug, through specific targeting of cancer cells and reducing their resistance to DDP, significantly enhanced the anti-NSCLC effects of DDP in vitro, providing a promising therapeutic option for the clinical treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Liposomes/therapeutic use , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Cell Proliferation
11.
Mikrochim Acta ; 191(8): 447, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38963544

ABSTRACT

An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).


Subject(s)
Copper , Doxorubicin , Glucose Oxidase , Hyaluronic Acid , Metal-Organic Frameworks , Tumor Microenvironment , Zeolites , Copper/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Tumor Microenvironment/drug effects , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Humans , Zeolites/chemistry , Animals , Metal-Organic Frameworks/chemistry , Hyaluronic Acid/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Cell Line, Tumor , Mice , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Neoplasms/drug therapy , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Imidazoles
12.
Arch Pharm (Weinheim) ; 357(10): e2400274, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39031554

ABSTRACT

Tetrandrine (TET) is a natural bis-benzylisoquinoline alkaloid isolated from Stephania species with a wide range of biological and pharmacologic activities; it mainly serves as an anti-inflammatory agent or antitumor adjuvant in clinical applications. However, limitations such as prominent hydrophobicity, severe off-target toxicity, and low absorption result in suboptimal therapeutic outcomes preventing its widespread adoption. Nanoparticles have proven to be efficient devices for targeted drug delivery since drug-carrying nanoparticles can be passively transported to the tumor site by the enhanced permeability and retention (EPR) effects, thus securing a niche in cancer therapies. Great progress has been made in nanocarrier construction for TET delivery due to their outstanding advantages such as increased water-solubility, improved biodistribution and blood circulation, reduced off-target irritation, and combinational therapy. Herein, we systematically reviewed the latest advancements in TET-loaded nanoparticles and their respective features with the expectation of providing perspective and guidelines for future research and potential applications of TET.


Subject(s)
Benzylisoquinolines , Biological Availability , Nanoparticles , Solubility , Benzylisoquinolines/chemistry , Benzylisoquinolines/administration & dosage , Benzylisoquinolines/pharmacology , Benzylisoquinolines/pharmacokinetics , Humans , Nanoparticles/chemistry , Animals , Drug Carriers/chemistry , Drug Delivery Systems , Tissue Distribution , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage
13.
Phytochem Anal ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830775

ABSTRACT

INTRODUCTION: Traditional Chinese medicine (TCM) has been used for thousands of years in China, characterizing with novel pharmacological mechanisms, low toxicity, and limited side effects. However, the application of TCM active ingredients is often hindered by their physical and chemical properties, including poor solubility, low bioavailability, short half-life, toxic side effects within therapeutic doses, and instability in biological environments. Consequently, an increasing number of researchers are directing their attention towards the discovery of nano-delivery systems for TCM to overcome these clinical challenges. OBJECTIVES: This review aims to provide the latest knowledge and results concerning the studies on the nano-delivery systems for the active ingredients from TCM. MATERIALS AND METHODS: Recent literature relating to nano-delivery systems for the active ingredients from TCM is summarized to provide a fundamental understanding of how such systems can enhance the application of phytochemicals. RESULTS: The nano-delivery systems of six types of TCM monomers are summarized and categorized based on the skeletal structure of the natural compounds. These categories include terpenoids, flavonoids, alkaloids, quinones, polyphenols, and polysaccharides. The paper analyzes the characteristics, types, materials used, and the efficacy achieved by TCM-nano systems. Additionally, the advantages and disadvantages of nano-drug delivery systems for TCM are summarized in this paper. CONCLUSION: Nano-delivery systems represent a promising approach to overcoming clinical obstacles stemming from the physical and chemical properties of TCM active ingredients, thereby enhancing their clinical efficacy.

14.
Int J Mol Sci ; 25(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39337266

ABSTRACT

The charge-reversal nano-drug delivery system (CRNDDS) is a promising system for delivering chemotherapy drugs and has gained widespread application in cancer treatment. In this review, we summarize the recent advancements in CRNDDSs in terms of cancer treatment. We also delve into the charge-reversal mechanism of the CRNDDSs, focusing on the acid-responsive, redox-responsive, and enzyme-responsive mechanisms. This study elucidates how these systems undergo charge transitions in response to specific microenvironmental stimuli commonly found in tumor tissues. Furthermore, this review explores the pivotal role of CRNDDSs in tumor diagnosis and treatment, and their potential limitations. By leveraging the unique physiological characteristics of tumors, such as the acidic pH, specific redox potential, and specific enzyme activity, these systems demonstrate enhanced accumulation and penetration at tumor sites, resulting in improved therapeutic efficacy and diagnostic accuracy. The implications of this review highlight the potential of charge-reversal drug delivery systems as a novel and targeted strategy for cancer therapy and diagnosis.


Subject(s)
Antineoplastic Agents , Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Animals , Nanoparticle Drug Delivery System/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction
15.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675664

ABSTRACT

The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.


Subject(s)
Alkaloids , Glutathione , Indoles , Isoindoles , Matrines , Quinolizines , Reactive Oxygen Species , Alkaloids/chemistry , Alkaloids/pharmacology , Reactive Oxygen Species/metabolism , Quinolizines/chemistry , Quinolizines/pharmacology , Glutathione/metabolism , Humans , Animals , Indoles/chemistry , Indoles/pharmacology , Mice , Cell Line, Tumor , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Proteolysis , Nanoparticles/chemistry
16.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675668

ABSTRACT

In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).


Subject(s)
Blood-Brain Barrier , Ischemic Stroke , Humans , Ischemic Stroke/drug therapy , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Drug Delivery Systems , Reperfusion Injury/drug therapy , Nanoparticle Drug Delivery System/chemistry , Nanoparticles/chemistry , Brain Ischemia/drug therapy
17.
Molecules ; 29(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38930918

ABSTRACT

PURPOSE OF THE STUDY: the creation of a dextran coating on cerium oxide crystals using different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of antimicrobial effect. MATERIALS AND METHODS: Nanocomposites were synthesized using cerium nitrate and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO3)3x6H2O to dextran (by weight)-1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography-mass spectrometry against E. coli after 24 h and 48 h of co-incubation. RESULTS: According to the physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm) were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for Ce2D and C3D sols. At a nanoceria concentration of 10-2 M, the proliferative activity of fibroblasts was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D. The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased with increasing dextran concentration, and the highest level was registered in Ce3D; from the dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which significantly inhibited the multiplication of E. coli after 24 h by an average of 22-27%, and after 48 h, all nanocomposites suppressed the multiplication of E. coli by 58-77%, which was the most pronounced for Ce0.5D, Ce1D, and Ce2D. CONCLUSIONS: The necessary physical characteristics of nanoceria-dextran nanocomposites that provide the best wound healing biological effects were determined. Ce2D at a concentration of 10-3 M, which stimulates cell proliferation and metabolism up to 2.5 times and allows a reduction in the rate of microorganism multiplication by three to four times, was selected for subsequent nanodrug creation.


Subject(s)
Cerium , Dextrans , Escherichia coli , Fibroblasts , Nanocomposites , Wound Healing , Cerium/chemistry , Cerium/pharmacology , Dextrans/chemistry , Dextrans/pharmacology , Nanocomposites/chemistry , Humans , Wound Healing/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Fibroblasts/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Cell Proliferation/drug effects , Microbial Sensitivity Tests , Cell Line
18.
Pharm Dev Technol ; 29(1): 52-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38230653

ABSTRACT

To solve the problem of resistance of tumor cells to TRAIL and the inevitable side effects of imatinib during treatment, we successfully prepared a kind of multifunctional liposome that encapsulated imatinib in its internal water phase and inserted TRAIL on its membrane in this study, which named ITLPs. The liposomes appeared uniform spherical and the particle size was approximately 150 nm. ITLPs showed high accumulation in TRAIL-resistance cells and HT-29 tumor-bearing mice model. In vitro cytotoxicity assay results showed that the killing activity of HT-29 cells treated with ITLPs increased by 50% and confirmed that this killing activity was mediated by the apoptosis pathway. Through mechanism studies, it was found that ITLPs arrested up to 32.3% of cells in phase M to exert anti-tumor effects. In vivo anti-tumor study showed that ITLPs achieved 61.8% tumor suppression and little toxicity in the HT-29 tumor-bearing mice model. Overall results demonstrated that codelivery of imatinib and TRAIL via liposomes may be a prospective method in the treatment of the TRAIL-resistance tumor.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Imatinib Mesylate , Animals , Humans , Mice , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Imatinib Mesylate/administration & dosage , Liposomes , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
19.
AAPS PharmSciTech ; 25(3): 51, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424412

ABSTRACT

The term cosmetics refers to any substances or products intended for external application on the skin with the aim of protection and better appearance of the skin surface. The skin delivery system promotes the controlled and targeted delivery of active ingredients. The development of this system has been driven by challenges encountered with conventional cosmeceuticals, including low skin retention of active components, limited percutaneous penetration, poor water dispersion of insoluble active ingredients, and instability of effective components. The aim is to create cosmeceuticals that can effectively overcome these issues. This review focuses on various nanocarriers used in cosmeceuticals currently and their applications in skin care, hair care, oral care, and more. The importance of nanotechnology in the sphere of research and development is growing. It provides solutions to various problems faced by conventional technologies, methods, and product formulations thus taking hold of the cosmetic industry as well. Nowadays, consumers are investing in cosmetics only for better appearance thus problems like wrinkles, ageing, hair loss, and dandruff requires to be answered proficiently. Nanocarriers not only enhance the efficacy of cosmeceutical products, providing better and longer-lasting effects, but they also contribute to the improved aesthetic appearance of the products. This dual benefit not only enhances the final quality and efficacy of the product but also increases consumer satisfaction. Additionally, nanocarriers offer protection against UV rays, further adding to the overall benefits of the cosmeceutical product. Figure 1 represents various advantages of nanocarriers used in cosmeceuticals. Nanotechnology is also gaining importance due to their high penetration of actives in the deeper layers of skin. It can be said that nanotechnology is taking over all the drawbacks of the traditional products. Thus, nanocarriers discussed in this review are used in nanotechnology to deliver the active ingredient of the cosmeceutical product to the desired site.


Subject(s)
Cosmeceuticals , Cosmetics , Humans , Self Care , Skin , Skin Absorption
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 13-18, 2024 Jan 20.
Article in Zh | MEDLINE | ID: mdl-38322528

ABSTRACT

Nanodrugs are widely utilized in the biomedical fields, exhibiting immense potential in cancer therapy in particular. However, tumors exist in an extremely complicated microenvironment where substances like collagen are continuously deposited and remodeled, leading to significant alterations in the mechanical properties of the extracellular matrix (ECM) during tumor development. Previous research has primarily focused on the specific physicochemical properties of nanodrugs, such as particle size, electric charge, shape, surface chemistry, etc., and their effects on cellular uptake, cytotoxicity, and in vivo pharmacokinetics. Limited studies have been done to explore the impact of ECM mechanical properties on nanodrug delivery. In this review, we systematically summarized the relevant research findings on this topic from the perspective of the characteristics and testing methods of tumor ECM mechanics. Additionally, we made a thorough discussion of the potential mechanical and biological mechanisms involved in nanodrug delivery. We proposed several noteworthy research directions. Regarding the overall strategy, there is a need to emphasize targeted delivery that combines ECM mechanics and nanomechanics to achieve precise drug delivery. Regarding the spatial aspect, attention should be given to the nonlinear spatial mechanical heterogeneity within the interior of solid tumors and the construction of mechanic microenvironment-adaptive nanocarriers to improve the delivery efficiency. Regarding the temporal aspect, emphasis should be placed on the dynamic development and changes in the mechanical microenvironment during solid tumor growth and treatment processes. Based on the stromal mechanical characteristics of the tumor tissues of individual patients, personalized treatment strategies can be formulated, which will enhance treatment specificity and efficacy. In addition, issues such as mechanically targeted nanodrug delivery, degradation, and metabolism under dynamic ECM mechanical conditions warrant further investigation.


Subject(s)
Nanoparticles , Neoplasms , Humans , Neoplasms/drug therapy , Drug Delivery Systems/methods , Nanoparticles/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL