Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.653
Filter
Add more filters

Publication year range
1.
Cell ; 187(15): 4030-4042.e13, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38908367

ABSTRACT

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.


Subject(s)
Aging , DNA Methylation , Telomerase , Telomerase/metabolism , Telomerase/genetics , Humans , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Cellular Senescence , Promoter Regions, Genetic , DNA Methyltransferase 3B , Brain/metabolism , Telomere/metabolism , Mice, Inbred C57BL , Male , Transcription Factor AP-1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Neurogenesis
2.
Cell ; 186(20): 4345-4364.e24, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37774676

ABSTRACT

Progenitor cells are critical in preserving organismal homeostasis, yet their diversity and dynamics in the aged brain remain underexplored. We introduced TrackerSci, a single-cell genomic method that combines newborn cell labeling and combinatorial indexing to characterize the transcriptome and chromatin landscape of proliferating progenitor cells in vivo. Using TrackerSci, we investigated the dynamics of newborn cells in mouse brains across various ages and in a mouse model of Alzheimer's disease. Our dataset revealed diverse progenitor cell types in the brain and their epigenetic signatures. We further quantified aging-associated shifts in cell-type-specific proliferation and differentiation and deciphered the associated molecular programs. Extending our study to the progenitor cells in the aged human brain, we identified conserved genetic signatures across species and pinpointed region-specific cellular dynamics, such as the reduced oligodendrogenesis in the cerebellum. We anticipate that TrackerSci will be broadly applicable to unveil cell-type-specific temporal dynamics in diverse systems.


Subject(s)
Brain , Stem Cells , Animals , Humans , Mice , Brain/metabolism , Cell Differentiation , Chromatin/metabolism , Transcriptome , Aging , Epigenomics
3.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35768006

ABSTRACT

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Subject(s)
COVID-19 , Influenza, Human , Neoplasms , Animals , Humans , Influenza, Human/pathology , Mice , Microglia/pathology , Myelin Sheath , Neoplasms/pathology , SARS-CoV-2
4.
Cell ; 184(3): 741-758.e17, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33484631

ABSTRACT

Both transcription and three-dimensional (3D) architecture of the mammalian genome play critical roles in neurodevelopment and its disorders. However, 3D genome structures of single brain cells have not been solved; little is known about the dynamics of single-cell transcriptome and 3D genome after birth. Here, we generated a transcriptome (3,517 cells) and 3D genome (3,646 cells) atlas of the developing mouse cortex and hippocampus by using our high-resolution multiple annealing and looping-based amplification cycles for digital transcriptomics (MALBAC-DT) and diploid chromatin conformation capture (Dip-C) methods and developing multi-omic analysis pipelines. In adults, 3D genome "structure types" delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first post-natal month. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, we examine allele-specific structure of imprinted genes, revealing local and chromosome (chr)-wide differences. These findings uncover an unknown dimension of neurodevelopment.


Subject(s)
Brain/growth & development , Genome , Sensation/genetics , Transcription, Genetic , Alleles , Animals , Animals, Newborn , Cell Lineage/genetics , Chromatin/metabolism , Gene Expression Regulation, Developmental , Gene Ontology , Gene Regulatory Networks , Genetic Loci , Genomic Imprinting , Mice , Multigene Family , Neuroglia/metabolism , Neurons/metabolism , Transcriptome/genetics , Visual Cortex/metabolism
5.
Cell ; 179(1): 74-89.e10, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31495570

ABSTRACT

During neural tube closure and spinal cord development, many cells die in both the central and peripheral nervous systems (CNS and PNS, respectively). However, myeloid-derived professional phagocytes have not yet colonized the trunk region during early neurogenesis. How apoptotic cells are removed from this region during these stages remains largely unknown. Using live imaging in zebrafish, we demonstrate that neural crest cells (NCCs) respond rapidly to dying cells and phagocytose cellular debris around the neural tube. Additionally, NCCs have the ability to enter the CNS through motor exit point transition zones and clear debris in the spinal cord. Surprisingly, NCCs phagocytosis mechanistically resembles macrophage phagocytosis and their recruitment toward cellular debris is mediated by interleukin-1ß. Taken together, our results reveal a role for NCCs in phagocytosis of debris in the developing nervous system before the presence of professional phagocytes.


Subject(s)
Cell Movement/physiology , Neural Crest/physiology , Neurogenesis/physiology , Peripheral Nervous System/growth & development , Phagocytosis/physiology , Spinal Cord/growth & development , Animals , Animals, Genetically Modified , Apoptosis/physiology , Cell Differentiation/physiology , Interleukin-1beta/metabolism , Phagocytes/physiology , Phagosomes/physiology , Zebrafish/embryology
6.
Cell ; 177(3): 654-668.e15, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30929900

ABSTRACT

New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.


Subject(s)
Embryonic Stem Cells/metabolism , Neurogenesis , Animals , Cell Differentiation , Dentate Gyrus/metabolism , Embryo, Mammalian/metabolism , Embryonic Stem Cells/cytology , Female , Gene Expression Regulation, Developmental , Hippocampus/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/cytology , Neural Stem Cells/metabolism
7.
Cell ; 178(5): 1159-1175.e17, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442405

ABSTRACT

Expansion of CAG trinucleotide repeats in ATXN1 causes spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease that impairs coordination and cognition. While ATXN1 is associated with increased Alzheimer's disease (AD) risk, CAG repeat number in AD patients is not changed. Here, we investigated the consequences of ataxin-1 loss of function and discovered that knockout of Atxn1 reduced CIC-ETV4/5-mediated inhibition of Bace1 transcription, leading to increased BACE1 levels and enhanced amyloidogenic cleavage of APP, selectively in AD-vulnerable brain regions. Elevated BACE1 expression exacerbated Aß deposition and gliosis in AD mouse models and impaired hippocampal neurogenesis and olfactory axonal targeting. In SCA1 mice, polyglutamine-expanded mutant ataxin-1 led to the increase of BACE1 post-transcriptionally, both in cerebrum and cerebellum, and caused axonal-targeting deficit and neurodegeneration in the hippocampal CA2 region. These findings suggest that loss of ataxin-1 elevates BACE1 expression and Aß pathology, rendering it a potential contributor to AD risk and pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Ataxin-1/metabolism , Brain/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Ataxin-1/deficiency , Ataxin-1/genetics , Brain/pathology , CA2 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Gene Frequency , Humans , Male , Mice , Mice, Transgenic , Neurogenesis , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Trinucleotide Repeats/genetics , Up-Regulation
8.
Cell ; 173(6): 1370-1384.e16, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29856955

ABSTRACT

The cerebral cortex underwent rapid expansion and increased complexity during recent hominid evolution. Gene duplications constitute a major evolutionary force, but their impact on human brain development remains unclear. Using tailored RNA sequencing (RNA-seq), we profiled the spatial and temporal expression of hominid-specific duplicated (HS) genes in the human fetal cortex and identified a repertoire of 35 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among them NOTCH2NL, human-specific paralogs of the NOTCH2 receptor, stood out for their ability to promote cortical progenitor maintenance. NOTCH2NL promote the clonal expansion of human cortical progenitors, ultimately leading to higher neuronal output. At the molecular level, NOTCH2NL function by activating the Notch pathway through inhibition of cis Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes active during human corticogenesis and reveals how human-specific NOTCH paralogs may have contributed to the expansion of the human cortex.


Subject(s)
Cerebral Cortex/metabolism , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neurogenesis , Neurons/metabolism , Receptor, Notch2/genetics , Amino Acid Sequence , Calcium-Binding Proteins , Cell Differentiation/genetics , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization , Neural Stem Cells/metabolism , Signal Transduction
9.
Cell ; 172(5): 1063-1078.e19, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474907

ABSTRACT

Interneurons navigate along multiple tangential paths to settle into appropriate cortical layers. They undergo a saltatory migration paced by intermittent nuclear jumps whose regulation relies on interplay between extracellular cues and genetic-encoded information. It remains unclear how cycles of pause and movement are coordinated at the molecular level. Post-translational modification of proteins contributes to cell migration regulation. The present study uncovers that carboxypeptidase 1, which promotes post-translational protein deglutamylation, controls the pausing of migrating cortical interneurons. Moreover, we demonstrate that pausing during migration attenuates movement simultaneity at the population level, thereby controlling the flow of interneurons invading the cortex. Interfering with the regulation of pausing not only affects the size of the cortical interneuron cohort but also impairs the generation of age-matched projection neurons of the upper layers.


Subject(s)
Cell Movement , Cerebral Cortex/cytology , Interneurons/cytology , Morphogenesis , Actomyosin/metabolism , Animals , Carboxypeptidases/metabolism , Cell Cycle , Chemotactic Factors/metabolism , Embryo, Mammalian/cytology , Female , Gene Deletion , Interneurons/metabolism , Mice , Mice, Knockout , Myosin-Light-Chain Kinase/metabolism , Neurogenesis , Phenotype
10.
Cell ; 173(4): 1045-1057.e9, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727663

ABSTRACT

Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche.


Subject(s)
Ependyma/metabolism , Genomics , Actins/genetics , Actins/metabolism , Animals , Cell Differentiation/drug effects , Ependyma/cytology , Ependyma/drug effects , Female , Fibroblast Growth Factor 2/pharmacology , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Single-Cell Analysis , Stem Cell Niche , Transcriptome , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
11.
Cell ; 171(4): 877-889.e17, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28965759

ABSTRACT

N6-methyladenosine (m6A), installed by the Mettl3/Mettl14 methyltransferase complex, is the most prevalent internal mRNA modification. Whether m6A regulates mammalian brain development is unknown. Here, we show that m6A depletion by Mettl14 knockout in embryonic mouse brains prolongs the cell cycle of radial glia cells and extends cortical neurogenesis into postnatal stages. m6A depletion by Mettl3 knockdown also leads to a prolonged cell cycle and maintenance of radial glia cells. m6A sequencing of embryonic mouse cortex reveals enrichment of mRNAs related to transcription factors, neurogenesis, the cell cycle, and neuronal differentiation, and m6A tagging promotes their decay. Further analysis uncovers previously unappreciated transcriptional prepatterning in cortical neural stem cells. m6A signaling also regulates human cortical neurogenesis in forebrain organoids. Comparison of m6A-mRNA landscapes between mouse and human cortical neurogenesis reveals enrichment of human-specific m6A tagging of transcripts related to brain-disorder risk genes. Our study identifies an epitranscriptomic mechanism in heightened transcriptional coordination during mammalian cortical neurogenesis.


Subject(s)
Neurogenesis , Prosencephalon/embryology , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Animals , Cell Cycle , Gene Expression Regulation , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Organoids/metabolism , Prosencephalon/cytology , Prosencephalon/metabolism , RNA Stability
12.
Mol Cell ; 83(23): 4222-4238.e10, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38065061

ABSTRACT

Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.


Subject(s)
Alternative Splicing , RNA Splicing , Exons/genetics , Introns , RNA
13.
Genes Dev ; 37(5-6): 218-242, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36931659

ABSTRACT

Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.


Subject(s)
Gene Expression Regulation , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation/genetics , Chromatin Assembly and Disassembly , Chromatin , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
14.
Annu Rev Neurosci ; 45: 515-531, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35440142

ABSTRACT

Developmental abnormalities of the cerebellum are among the most recognized structural brain malformations in human prenatal imaging. Yet reliable information regarding their cause in humans is sparse, and few outcome studies are available to inform prognosis. We know very little about human cerebellar development, in stark contrast to the wealth of knowledge from decades of research on cerebellar developmental biology of model organisms, especially mice. Recent studies show that multiple aspects of human cerebellar development significantly differ from mice and even rhesus macaques, a nonhuman primate. These discoveries challenge many current mouse-centric models of normal human cerebellar development and models regarding the pathogenesis of several neurodevelopmental phenotypes affecting the cerebellum, including Dandy-Walker malformation and medulloblastoma. Since we cannot model what we do not know, additional normative and pathological human developmental data are essential, and new models are needed.


Subject(s)
Cerebellar Neoplasms , Neurodevelopmental Disorders , Animals , Cerebellum , Female , Humans , Macaca mulatta , Mice , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pregnancy , Transcriptome
15.
Annu Rev Cell Dev Biol ; 32: 127-141, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27298094

ABSTRACT

The brain constantly changes to store memories and adapt to new conditions. One type of plasticity that has gained increasing interest during the last years is the generation of new cells. The generation of both new neurons and glial cells contributes to neural plasticity and to some neural repair. There are substantial differences between mammalian species with regard to the extent of and mechanisms behind cell exchange in neural plasticity. Both neurogenesis and gliogenesis have several specific features in humans, which may contribute to the unique plasticity of the human brain.


Subject(s)
Nerve Regeneration/physiology , Neurogenesis , Neuroglia/cytology , Neuronal Plasticity/physiology , Animals , Brain/cytology , Humans , Oligodendroglia/cytology
16.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35914530

ABSTRACT

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Subject(s)
Neurogenesis , RNA Splicing , Alternative Splicing , Animals , Exons/genetics , Mammals , Mice , Neurogenesis/genetics , Neurons , RNA-Binding Proteins/genetics
17.
Mol Cell ; 82(24): 4627-4646.e14, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36417913

ABSTRACT

Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.


Subject(s)
Chromatin , Histones , Histones/genetics , Histones/metabolism , Acetylation , Transcriptional Activation , Chromatin/genetics , Protein Processing, Post-Translational , Nucleosomes
18.
Genes Dev ; 36(21-24): 1100-1118, 2022.
Article in English | MEDLINE | ID: mdl-36617877

ABSTRACT

Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.


Subject(s)
Oxytocin , Receptors, Oxytocin , Mice , Animals , Oxytocin/metabolism , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Neurons/physiology , Olfactory Bulb/metabolism , Neurogenesis
19.
Genes Dev ; 36(1-2): 23-37, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34916302

ABSTRACT

The regenerative potential of neural stem cells (NSCs) declines during aging, leading to cognitive dysfunctions. This decline involves up-regulation of senescence-associated genes, but inactivation of such genes failed to reverse aging of hippocampal NSCs. Because many genes are up-regulated or down-regulated during aging, manipulation of single genes would be insufficient to reverse aging. Here we searched for a gene combination that can rejuvenate NSCs in the aged mouse brain from nuclear factors differentially expressed between embryonic and adult NSCs and their modulators. We found that a combination of inducing the zinc finger transcription factor gene Plagl2 and inhibiting Dyrk1a, a gene associated with Down syndrome (a genetic disorder known to accelerate aging), rejuvenated aged hippocampal NSCs, which already lost proliferative and neurogenic potential. Such rejuvenated NSCs proliferated and produced new neurons continuously at the level observed in juvenile hippocampi, leading to improved cognition. Epigenome, transcriptome, and live-imaging analyses indicated that this gene combination induces up-regulation of embryo-associated genes and down-regulation of age-associated genes by changing their chromatin accessibility, thereby rejuvenating aged dormant NSCs to function like juvenile active NSCs. Thus, aging of NSCs can be reversed to induce functional neurogenesis continuously, offering a way to treat age-related neurological disorders.


Subject(s)
Neural Stem Cells , Rejuvenation , Animals , Hippocampus , Mice , Neurogenesis/genetics , Neurons
20.
Physiol Rev ; 102(2): 511-550, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34632805

ABSTRACT

The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic, and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.


Subject(s)
Brain/physiology , Brain/physiopathology , Cerebral Cortex/physiology , Neurons/physiology , Animals , Biological Evolution , Cerebral Cortex/physiopathology , Disease Models, Animal , Humans , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL