Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.135
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 93(1): 339-366, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38346274

ABSTRACT

The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo-electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.


Subject(s)
Allosteric Site , Cryoelectron Microscopy , Molecular Dynamics Simulation , Receptors, Nicotinic , Signal Transduction , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Allosteric Regulation , Humans , Animals , Crystallography, X-Ray , Binding Sites , Protein Conformation , Ligands , Models, Molecular , Protein Multimerization , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Nicotinic Agonists/metabolism
2.
Cell ; 187(5): 1160-1176.e21, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38382524

ABSTRACT

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.


Subject(s)
alpha7 Nicotinic Acetylcholine Receptor , Humans , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/ultrastructure , Binding Sites , Cryoelectron Microscopy , Inflammation/drug therapy , Signal Transduction , Allosteric Regulation
3.
Hum Mol Genet ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251229

ABSTRACT

α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.

4.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36897571

ABSTRACT

Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation. Here, we report that MafB deficiency impairs ß cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse ß cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced ß cell migration towards autonomic nerves and impaired ß cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Adult , Animals , Humans , Glucagon/genetics , Glucagon/metabolism , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Pancreas/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism
5.
FASEB J ; 38(1): e9664, 2024 01.
Article in English | MEDLINE | ID: mdl-38038805

ABSTRACT

The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.


Subject(s)
Acute Lung Injury , Vagus Nerve Stimulation , Mice , Animals , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Lipopolysaccharides/toxicity , Netrin-1/metabolism , Acute Lung Injury/chemically induced
6.
Cell Mol Life Sci ; 81(1): 337, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120784

ABSTRACT

The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.


Subject(s)
Calcium , Receptors, Nicotinic , Animals , Rats , Acetylcholine/metabolism , Acetylcholine/pharmacology , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Molecular Dynamics Simulation , Patch-Clamp Techniques , Protein Subunits/metabolism , Protein Subunits/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Xenopus laevis
7.
Proc Natl Acad Sci U S A ; 119(43): e2208081119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251999

ABSTRACT

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that modulates neuronal excitability, largely by allowing Ca2+ permeation. Agonist binding promotes transition from a resting state to an activated state, and then rapidly to a desensitized state. Recently, cryogenic electron microscopy (cryo-EM) structures of the human α7 receptor in nanodiscs were reported in multiple conformations. These were selectively stabilized by inhibitory, activating, or potentiating compounds. However, the functional annotation of these structures and their differential interactions with unresolved lipids and ligands remain incomplete. Here, we characterized their ion permeation, membrane interactions, and ligand binding using computational electrophysiology, free-energy calculations, and coarse-grained molecular dynamics. In contrast to nonconductive structures in apparent resting and desensitized states, the structure determined in the presence of the potentiator PNU-120596 was consistent with an activated state permeable to Ca2+. Transition to this state was associated with compression and rearrangement of the membrane, particularly in the vicinity of the peripheral MX helix. An intersubunit transmembrane site was implicated in selective binding of either PNU-120596 in the activated state or cholesterol in the desensitized state. This substantiates functional assignment of all three lipid-embedded α7-receptor structures with ion-permeation simulations. It also proposes testable models of their state-dependent interactions with lipophilic ligands, including a mechanism for allosteric modulation at the transmembrane subunit interface.


Subject(s)
Ligand-Gated Ion Channels , Receptors, Nicotinic , Allosteric Regulation , Cholesterol , Humans , Isoxazoles , Ligand-Gated Ion Channels/metabolism , Ligands , Lipids , Phenylurea Compounds , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism
8.
J Biol Chem ; 299(5): 104707, 2023 05.
Article in English | MEDLINE | ID: mdl-37061001

ABSTRACT

Virus entry into animal cells is initiated by attachment to target macromolecules located on host cells. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trimeric spike glycoprotein targets host angiotensin converting enzyme 2 to gain cellular access. The SARS-CoV-2 glycoprotein contains a neurotoxin-like region that has sequence similarities to the rabies virus and the HIV glycoproteins, as well as to snake neurotoxins, which interact with nicotinic acetylcholine receptor (nAChR) subtypes via this region. Using a peptide of the neurotoxin-like region of SARS-CoV-2 (SARS-CoV-2 glycoprotein peptide [SCoV2P]), we identified that this area moderately inhibits α3ß2, α3ß4, and α4ß2 subtypes, while potentiating and inhibiting α7 nAChRs. These nAChR subtypes are found in target tissues including the nose, lung, central nervous system, and immune cells. Importantly, SCoV2P potentiates and inhibits ACh-induced α7 nAChR responses by an allosteric mechanism, with nicotine enhancing these effects. Live-cell confocal microscopy was used to confirm that SCoV2P interacts with α7 nAChRs in transfected neuronal-like N2a and human embryonic kidney 293 cells. The SARS-CoV-2 ectodomain functionally potentiates and inhibits the α7 subtype with nanomolar potency. Our functional findings identify that the α7 nAChR is a target for the SARS-CoV-2 glycoprotein, providing a new aspect to our understanding of SARS-CoV-2 and host cell interactions, in addition to disease pathogenesis.


Subject(s)
Receptors, Nicotinic , SARS-CoV-2 , alpha7 Nicotinic Acetylcholine Receptor , Humans , alpha7 Nicotinic Acetylcholine Receptor/genetics , COVID-19 , Neurotoxins , Receptors, Nicotinic/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Article in English | MEDLINE | ID: mdl-39269451

ABSTRACT

The alpha7 nicotinic acetylcholine receptor (α7nAChR) regulates inflammation in experimental models and is expressed in human peripheral blood mononuclear cells (PBMCs) and in human atherosclerotic plaques. However, its role in regulating inflammation in patients with cardiovascular disease is unknown. This study aims to investigate whether α7nAChR stimulation can reduce the inflammatory response in PBMCs from patients with newly diagnosed coronary artery disease (CAD). Human PBMCs, extracted from patients with verified CAD (n=38) and control participants with healthy vessels (n=38), were challenged in vitro with lipopolysaccharide (LPS) in combination with the α7nAChR agonist PHA 568487. Cytokine levels of the supernatants were analyzed using a multiplex immunoassay. Patients in the CAD group were re-examined after 6 months. The immune response to LPS did not differ between PBMCs from control group and CAD patients. α7nAChR stimulation decreased TNFα in both control participants and CAD patients. The most pronounced effect of α7nAChR stimulation was observed in CAD patients at their first visit, where 15 of 17 cytokines were decreased (IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p70), IL-17A, G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1ß and TNFα). In conclusion, stimulation with α7nAChR agonist PHA 568487 dampens the inflammatory response in human PBMCs. This finding suggests that the anti-inflammatory properties of the α7nAChR may have a role in treating CAD.

10.
Biochem Biophys Res Commun ; 709: 149825, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38537599

ABSTRACT

SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Humans , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Protein Binding , Receptors, Nicotinic/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry
11.
Mol Carcinog ; 63(2): 253-265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37921560

ABSTRACT

Evidence has shown a strong relationship between smoking and epithelial mesenchymal transition (EMT). α5-nicotinic acetylcholine receptor (α5-nAChR) contributes to nicotine-induced lung cancer cell EMT. The cytoskeleton-associated protein PLEK2 is mainly involved in cytoskeletal protein recombination and cell stretch migration regulation, which is closely related to EMT. However, little is known about the link between nicotine/α5-nAChR and PLEK2 in lung adenocarcinoma (LUAD). Here, we identified a link between α5-nAChR and PLEK2 in LUAD. α5-nAChR expression was correlated with PLEK2 expression, smoking status and lower survival in vivo. α5-nAChR mediated nicotine-induced PLEK2 expression via STAT3. α5-nAChR/PLEK2 signaling is involved in LUAD cell migration, invasion and stemness. Moreover, PLEK2 was found to interact with CFL1 in nicotine-induced EMT in LUAD cells. Furthermore, the functional link among α5-nAChR, PLEK2 and CFL1 was confirmed in mouse xenograft tissues and human LUAD tissues. These findings reveal a novel α5-nAChR/PLEK2/CFL1 pathway involved in nicotine-induced LUAD progression.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Receptors, Nicotinic , Animals , Humans , Mice , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , Nicotine/pharmacology , Receptors, Nicotinic/metabolism , Smoking
12.
J Membr Biol ; 257(3-4): 245-256, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967800

ABSTRACT

The human neuronal nicotinic acetylcholine receptor α7 (nAChR) is an important target implicated in diseases like Alzheimer's or Parkinson's, as well as a validated target for drug discovery. For α7 nAChR model systems, correct folding and ion influx functions are essential. Two chaperones, resistance to inhibitors of cholinesterase 3 (RIC3) and novel nAChR regulator (NACHO), enhance the assembly and function of α7 nAChR. This study investigates the consequence of NACHO absence on α7 nAChR expression and function. Therefore, the sequences of human α7 nAChR and human RIC3 were transduced in Chinese hamster ovary (CHO) cells. Protein expression and function of α7 nAChR were confirmed by Western blot and voltage clamp, respectively. Cellular viability was assessed by cell proliferation and lactate dehydrogenase assays. Intracellular and extracellular expression were determined by in/on-cell Western, compared with another nAChR subtype by novel cluster fluorescence-linked immunosorbent assay, and N-glycosylation efficiency was assessed by glycosylation digest. The transgene CHO cell line showed expected protein expression and function for α7 nAChR and cell viability was barely influenced by overexpression. While intracellular levels of α7 nAChR were as anticipated, plasma membrane insertion was low. The glycosylation digest revealed no appreciable N-glycosylation product. This study demonstrates a stable and functional cell line expressing α7 nAChR, whose protein expression, function, and viability are not affected by the absence of NACHO. The reduced plasma membrane insertion of α7 nAChR, combined with incorrect matured N-glycosylation at the Golgi apparatus, suggests a loss of recognition signal for lectin sorting.


Subject(s)
Cricetulus , alpha7 Nicotinic Acetylcholine Receptor , Animals , CHO Cells , Glycosylation , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Humans , Cricetinae , Transgenes , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Cell Survival/genetics , Intracellular Signaling Peptides and Proteins
13.
FASEB J ; 37(9): e23120, 2023 09.
Article in English | MEDLINE | ID: mdl-37527279

ABSTRACT

The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.


Subject(s)
Tumor Necrosis Factor-alpha , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mice , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fatty Acids , Down-Regulation , Hypothalamus/metabolism
14.
Synapse ; 78(1): e22285, 2024 01.
Article in English | MEDLINE | ID: mdl-38287475

ABSTRACT

Agents that positively modulate the activity of α7nAChRs are used as cognitive enhancers and for the treatment of hippocampus-dependent functional decline. However, it is not known whether the expression and the effects of α7nAChRs apply to the entire longitudinal axis of the hippocampus equally. Given that cholinergic system-involving hippocampal functions are not equally distributed along the hippocampus, we comparatively examined the expression and the effects of α7nAChRs on excitatory synaptic transmission between the dorsal and the ventral hippocampal slices from adult rats. We found that α7nAChRs are equally expressed in the CA1 field of the two segments of the hippocampus. However, activation of α7nAChRs by their highly selective agonist PNU 282987 induced a gradually developing increase in field excitatory postsynaptic potential only in the dorsal hippocampus. This long-term potentiation was not reversed upon application of nonselective nicotinic receptor antagonist mecamylamine, but the induction of potentiation was prevented by prior blockade of α7nAChRs by their antagonist MG 624. In contrast to the long-term synaptic plasticity, we found that α7nAChRs did not modulate short-term synaptic plasticity in either the dorsal or the ventral hippocampus. These results may have implications for the role that α7nAChRs play in specifically modulating functions that depend on the normal function of the dorsal hippocampus. We propose that hippocampal functions that rely on a direct α7 nAChR-mediated persistent enhancement of glutamatergic synaptic transmission are preferably supported by dorsal but not ventral hippocampal synapses.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Rats , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Hippocampus/metabolism , CA1 Region, Hippocampal/metabolism , Receptors, Nicotinic/metabolism , Synaptic Transmission/physiology
15.
Mol Cell Biochem ; 479(7): 1627-1642, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38771378

ABSTRACT

Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.


Subject(s)
Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Humans , Animals , Protein Interaction Maps , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism
16.
Kidney Blood Press Res ; 49(1): 646-656, 2024.
Article in English | MEDLINE | ID: mdl-38955174

ABSTRACT

INTRODUCTION: Contrast nephropathy (CN) is characterized by oxidative stress, vasoconstriction, tubular toxicity, and hypoxia of the renal medulla. We aimed to test the therapeutic effects of an α7 nicotinic acetylcholine receptor (nAChR) agonist, GTS-21, in an experimental CN model. METHODS: Male Sprague-Dawley rats (n = 40) were divided into 4 groups: saline-treated control, GTS-21-treated control, contrast, and GTS-21-treated contrast groups. Starting on the 1st day, GTS-21 (4 mg/kg, intraperitoneally) or saline was administered twice a day for 3 days. CN was induced on the second day by intravenous injection of indomethacin (10 mg/kg), l-NAME (10 mg/kg), and a contrast agent with high osmolarity (6 mL/kg; Urografin 76%). At the 72nd hour, blood and kidney samples were obtained for the determination of biochemical, histological, and gene expression parameters. RESULTS: Compared to those in control rats, the elevated serum BUN level in the contrast group decreased with GTS-21 treatment, while H&E staining and TUNEL assays showed that contrast-induced renal injury was improved by GTS-21. Moreover, GTS-21 treatment in the CN also increased the antioxidant glutathione level. In the contrast group, a significant increase in IL-6 expression and a decrease in TGF-ß expression were observed; however, GTS-21 treatment decreased IL-6 expression and increased TGF-ß expression. CONCLUSION: GTS-21 significantly alleviated renal injury parameters through antioxidant, anti-inflammatory, and antiapoptotic mechanisms in the CN model.


Subject(s)
Contrast Media , Kidney Diseases , Rats, Sprague-Dawley , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Male , Rats , Contrast Media/adverse effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney Diseases/pathology , Disease Models, Animal , Oxidative Stress/drug effects , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Quinuclidines , Bridged Bicyclo Compounds, Heterocyclic
17.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438581

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Subject(s)
GABAergic Neurons , Hyperalgesia , Mice, Inbred C57BL , Receptors, Nicotinic , Animals , Receptors, Nicotinic/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Male , Hyperalgesia/metabolism , Hyperalgesia/drug therapy , Mice , Pars Reticulata/metabolism , Pars Reticulata/drug effects , Nicotine/pharmacology , Analgesics/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Capsaicin/pharmacology , Acetylcholine/metabolism , Optogenetics , Pain Threshold/drug effects
18.
Acta Pharmacol Sin ; 45(7): 1349-1365, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38504011

ABSTRACT

Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms  of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.


Subject(s)
Infarction, Middle Cerebral Artery , Inflammasomes , Ischemic Stroke , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Vagus Nerve Stimulation , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Vagus Nerve Stimulation/methods , Ischemic Stroke/metabolism , Microglia/metabolism , Mice , Inflammasomes/metabolism , Male , Infarction, Middle Cerebral Artery/therapy , Neuroprotection , Mice, Knockout
19.
Cell Mol Life Sci ; 80(6): 164, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231269

ABSTRACT

The α7 nicotinic acetylcholine receptor (nAChR), a potential drug target for treating cognitive disorders, mediates communication between neuronal and non-neuronal cells. Although many competitive antagonists, agonists, and partial-agonists have been found and synthesized, they have not led to effective therapeutic treatments. In this context, small molecules acting as positive allosteric modulators binding outside the orthosteric, acetylcholine, site have attracted considerable interest. Two single-domain antibody fragments, C4 and E3, against the extracellular domain of the human α7-nAChR were generated through alpaca immunization with cells expressing a human α7-nAChR/mouse 5-HT3A chimera, and are herein described. They bind to the α7-nAChR but not to the other major nAChR subtypes, α4ß2 and α3ß4. E3 acts as a slowly associating positive allosteric modulator, strongly potentiating the acetylcholine-elicited currents, while not precluding the desensitization of the receptor. An E3-E3 bivalent construct shows similar potentiating properties but displays very slow dissociation kinetics conferring quasi-irreversible properties. Whereas, C4 does not alter the receptor function, but fully inhibits the E3-evoked potentiation, showing it is a silent allosteric modulator competing with E3 binding. Both nanobodies do not compete with α-bungarotoxin, localizing at an allosteric extracellular binding site away from the orthosteric site. The functional differences of each nanobody, as well as the alteration of functional properties through nanobody modifications indicate the importance of this extracellular site. The nanobodies will be useful for pharmacological and structural investigations; moreover, they, along with the extracellular site, have a direct potential for clinical applications.


Subject(s)
Receptors, Nicotinic , Single-Domain Antibodies , Humans , Mice , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Single-Domain Antibodies/pharmacology , Allosteric Regulation , Acetylcholine/pharmacology , Receptors, Nicotinic/metabolism
20.
Cell Mol Life Sci ; 80(5): 119, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029227

ABSTRACT

Chronic stress significantly elevates the expression levels of various neurotransmitters in the tumour microenvironment, thereby promoting the cell growth and metastasis of lung adenocarcinoma (LUAD). However, the role of chronic stress in the progression of LUAD remains unclear. In this study, we found that chronic restraint stress increases the levels of the neurotransmitter acetylcholine (ACh), and the α5-nicotinic acetylcholine receptor (α5-nAChR) and decreased fragile histidine triad (FHIT) expression in vivo. Crucially, the increased ACh levels promoted LUAD cell migration and invasion via modulation of the α5-nAChR/DNA methyltransferase 1 (DNMT1)/FHIT axis. In a chronic unpredictable stress (CUMS) mouse model, chronic stress promotes tumour development, accompanied by changes in α5-nAChR, DNMT1, FHIT, and vimentin. Together, these findings reveal a novel chronic stress-mediated LUAD signalling pathway: chronic stress enforces lung adenocarcinoma cell invasion and migration via the ACh/α5-nAChR/FHIT axis, which could be a potential therapeutic target for chronic stress-related LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Receptors, Nicotinic , Animals , Mice , Nicotine/pharmacology , Acetylcholine/pharmacology , Receptors, Nicotinic/genetics , Signal Transduction , Lung Neoplasms/pathology , Cell Line, Tumor , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL