Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612738

ABSTRACT

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Subject(s)
Carrier Proteins/genetics , Nuclear Proteins/genetics , Carrier Proteins/metabolism , Chromatin/metabolism , DNA , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Female , Genomic Instability , Germ-Line Mutation , Homologous Recombination , Humans , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Male , Neoplasms/genetics , Neoplasms/metabolism , Nuclear Proteins/metabolism , Primary Cell Culture , Recombinational DNA Repair
2.
Cell ; 175(2): 558-570.e11, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30245011

ABSTRACT

Given that genomic DNA exerts its function by being transcribed, it is critical for the maintenance of homeostasis that DNA damage, such as double-strand breaks (DSBs), within transcriptionally active regions undergoes accurate repair. However, it remains unclear how this is achieved. Here, we describe a mechanism for transcription-associated homologous recombination repair (TA-HRR) in human cells. The process is initiated by R-loops formed upon DSB induction. We identify Rad52, which is recruited to the DSB site in a DNA-RNA-hybrid-dependent manner, as playing pivotal roles in promoting XPG-mediated R-loop processing and initiating subsequent repair by HRR. Importantly, dysfunction of TA-HRR promotes DSB repair via non-homologous end joining, leading to a striking increase in genomic aberrations. Thus, our data suggest that the presence of R-loops around DSBs within transcriptionally active regions promotes accurate repair of DSBs via processing by Rad52 and XPG to protect genomic information in these critical regions from gene alterations.


Subject(s)
DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Nuclear Proteins/metabolism , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinational DNA Repair/physiology , Transcription Factors/metabolism , Cell Line , DNA/genetics , DNA Breaks, Double-Stranded , DNA Damage , DNA End-Joining Repair , DNA Repair , DNA-Binding Proteins/physiology , Endonucleases/physiology , Homologous Recombination , Humans , Nuclear Proteins/genetics , Nuclear Proteins/physiology , RNA/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Transcription Factors/physiology
3.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38423014

ABSTRACT

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Subject(s)
Chromatin , Nuclear Proteins , Animals , Chromatin/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , DNA/genetics , DNA End-Joining Repair , Histones/genetics , Histones/metabolism , Chromosome Pairing , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Mammals/metabolism
4.
Mol Cell ; 83(5): 698-714.e4, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36724784

ABSTRACT

Non-homologous end joining is the major double-strand break repair (DSBR) pathway in mammals. DNA-PK is the hub and organizer of multiple steps in non-homologous end joining (NHEJ). Recent high-resolution structures show how two distinct NHEJ complexes "synapse" two DNA ends. One complex includes a DNA-PK dimer mediated by XLF, whereas a distinct DNA-PK dimer forms via a domain-swap mechanism where the C terminus of Ku80 from one DNA-PK protomer interacts with another DNA-PK protomer in trans. Remarkably, the distance between the two synapsed DNA ends in both dimers is the same (∼115 Å), which matches the distance observed in the initial description of an NHEJ long-range synaptic complex. Here, a mutational strategy is used to demonstrate distinct cellular function(s) of the two dimers: one promoting fill-in end processing, while the other promotes DNA end resection. Thus, the specific DNA-PK dimer formed (which may be impacted by DNA end structure) dictates the mechanism by which ends will be made ligatable.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins , Animals , DNA-Binding Proteins/genetics , Protein Subunits/metabolism , DNA End-Joining Repair , DNA Repair , DNA/genetics , DNA-Activated Protein Kinase/genetics , Ku Autoantigen/genetics , Mammals/metabolism
5.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36854302

ABSTRACT

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Subject(s)
Chromatin , DNA Repair , Animals , Chromatin/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Mammals/metabolism , Telomere-Binding Proteins/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Cycle Proteins/metabolism
6.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34352203

ABSTRACT

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Subject(s)
DNA Ligase ATP/ultrastructure , DNA Repair Enzymes/ultrastructure , DNA-Activated Protein Kinase/ultrastructure , DNA-Binding Proteins/ultrastructure , Multiprotein Complexes/ultrastructure , Apoptosis/genetics , Cryoelectron Microscopy , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Ligase ATP/genetics , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/genetics , Humans , Ku Autoantigen/genetics , Ku Autoantigen/ultrastructure , Multiprotein Complexes/genetics , Phosphorylation/genetics
7.
Mol Cell ; 81(12): 2611-2624.e10, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33857404

ABSTRACT

The Shieldin complex shields double-strand DNA breaks (DSBs) from nucleolytic resection. Curiously, the penultimate Shieldin component, SHLD1, is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1, and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1, thereby ensuring a proper balance between end protection and resection during DSB repair. The loss of THAP1-dependent SHLD1 expression confers cross-resistance to poly (ADP-ribose) polymerase (PARP) inhibitor and cisplatin in BRCA1-deficient cells and shorter progression-free survival in ovarian cancer patients. Moreover, the embryonic lethality and PARPi sensitivity of BRCA1-deficient mice is rescued by ablation of SHLD1. Our study uncovers a transcriptional network that directly controls DSB repair choice and suggests a potential link between DNA damage and pathogenic THAP1 mutations, found in patients with the neurodevelopmental movement disorder adult-onset torsion dystonia type 6.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Cycle Proteins/genetics , DNA/metabolism , DNA Breaks, Double-Stranded/drug effects , DNA End-Joining Repair/drug effects , DNA Repair/genetics , Dystonia/genetics , Female , Host Cell Factor C1/metabolism , Mad2 Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Recombinational DNA Repair/drug effects , Telomere-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , YY1 Transcription Factor/metabolism
8.
Trends Biochem Sci ; 49(5): 391-400, 2024 May.
Article in English | MEDLINE | ID: mdl-38490833

ABSTRACT

One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.


Subject(s)
RNA , Translocation, Genetic , Humans , RNA/metabolism , RNA/genetics , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Chromosome Fragile Sites
9.
Mol Cell ; 77(5): 1080-1091.e8, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31862156

ABSTRACT

Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Genomic Instability , Animals , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Models, Genetic , Multiprotein Complexes , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Single Molecule Imaging , Time Factors , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis
10.
Mol Cell ; 74(3): 466-480.e4, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30930055

ABSTRACT

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.


Subject(s)
DNA Topoisomerases, Type II/genetics , Herpesvirus 1, Human/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-akt/genetics , Virus Latency/genetics , Animals , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Herpesvirus 1, Human/pathogenicity , Humans , MRE11 Homologue Protein/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Neurons/metabolism , Neurons/virology , Phosphorylation , Rats , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
11.
Mol Cell ; 71(2): 332-342.e8, 2018 07 19.
Article in English | MEDLINE | ID: mdl-30017584

ABSTRACT

The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Animals , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Ligase ATP/genetics , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Ku Autoantigen/genetics , Mice
12.
Mol Cell ; 70(5): 801-813.e6, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29804829

ABSTRACT

The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Gene Editing/methods , CRISPR-Associated Protein 9/metabolism , Humans , INDEL Mutation , K562 Cells , Kinetics , Models, Genetic
13.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30033372

ABSTRACT

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA End-Joining Repair , Telomere/metabolism , Telomeric Repeat Binding Protein 2/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Cell Line, Tumor , DNA Damage , Fibroblasts/cytology , Fibroblasts/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Mitosis , Protein Domains , Telomere/ultrastructure , Telomeric Repeat Binding Protein 2/chemistry , Telomeric Repeat Binding Protein 2/metabolism
14.
Mol Cell ; 72(2): 250-262.e6, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30270107

ABSTRACT

Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.


Subject(s)
Chromatin/genetics , DNA Repair/genetics , Histones/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , Genomic Instability/genetics , Homologous Recombination/genetics , Humans , K562 Cells , Tumor Suppressor p53-Binding Protein 1/genetics
15.
Proc Natl Acad Sci U S A ; 120(45): e2308569120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37917792

ABSTRACT

Toxoplasma gondii is a zoonotic protist pathogen that infects up to one third of the human population. This apicomplexan parasite contains three genome sequences: nuclear (65 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear integrants of mitochondrial DNA) and NUPTs (nuclear integrants of plastid DNA) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome-the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 mya, revealed that the movement and fixation of five NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb), and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together, these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.


Subject(s)
Toxoplasma , Humans , Toxoplasma/genetics , Genome , DNA, Mitochondrial/genetics , Mitochondria/genetics , Evolution, Molecular , Cell Nucleus/genetics , Sequence Analysis, DNA
16.
Mol Cell ; 65(4): 671-684.e5, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28132842

ABSTRACT

Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis.


Subject(s)
Cell Nucleus/radiation effects , DNA Breaks, Double-Stranded , DNA End-Joining Repair/radiation effects , G1 Phase/radiation effects , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Nucleus/enzymology , Cell Nucleus/pathology , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases , Endonucleases , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , G2 Phase , Gene Deletion , HeLa Cells , Humans , Kinetics , MRE11 Homologue Protein , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Translocation, Genetic , Tumor Suppressor Proteins , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
17.
Mol Cell ; 67(2): 252-265.e6, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28689661

ABSTRACT

While maintaining the integrity of the genome and sustaining bioenergetics are both fundamental functions of the cell, potential crosstalk between metabolic and DNA repair pathways is poorly understood. Since histone acetylation plays important roles in DNA repair and is sensitive to the availability of acetyl coenzyme A (acetyl-CoA), we investigated a role for metabolic regulation of histone acetylation during the DNA damage response. In this study, we report that nuclear ATP-citrate lyase (ACLY) is phosphorylated at S455 downstream of ataxia telangiectasia mutated (ATM) and AKT following DNA damage. ACLY facilitates histone acetylation at double-strand break (DSB) sites, impairing 53BP1 localization and enabling BRCA1 recruitment and DNA repair by homologous recombination. ACLY phosphorylation and nuclear localization are necessary for its role in promoting BRCA1 recruitment. Upon PARP inhibition, ACLY silencing promotes genomic instability and cell death. Thus, the spatial and temporal control of acetyl-CoA production by ACLY participates in the mechanism of DNA repair pathway choice.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , BRCA1 Protein/metabolism , Cell Nucleus/enzymology , DNA Breaks, Double-Stranded , Recombinational DNA Repair , A549 Cells , ATP Citrate (pro-S)-Lyase/genetics , Acetylation , Animals , BRCA1 Protein/genetics , Cell Nucleus/drug effects , Female , G2 Phase Cell Cycle Checkpoints , Genomic Instability , Glucose/metabolism , HCT116 Cells , HeLa Cells , Histones/metabolism , Humans , Melanoma, Experimental/enzymology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Phosphorylation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Binding , Protein Processing, Post-Translational , RNA Interference , Recombinational DNA Repair/drug effects , S Phase Cell Cycle Checkpoints , Serine , Time Factors , Transfection , Tumor Suppressor p53-Binding Protein 1/metabolism
18.
Mol Cell ; 66(3): 306-319, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28475867

ABSTRACT

Both embryonic and adult stem cells are endowed with a superior capacity to prevent the accumulation of genetic lesions, repair them, or avoid their propagation to daughter cells, which would be particularly detrimental to the whole organism. Inducible pluripotent stem cells also display a robust DNA damage response, but the stability of their genome is often conditioned by the mutational history of the cell population of origin, which constitutes an obstacle to clinical applications. Cancer stem cells are particularly tolerant to DNA damage and fail to undergo senescence or regulated cell death upon accumulation of genetic lesions. Such a resistance contributes to the genetic drift of evolving tumors as well as to their limited sensitivity to chemo- and radiotherapy. Here, we discuss the pathophysiological and therapeutic implications of the molecular pathways through which stem cells cope with DNA damage.


Subject(s)
Adult Stem Cells/pathology , DNA Damage , DNA Repair , Embryonic Stem Cells/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Pluripotent Stem Cells/pathology , Adult Stem Cells/metabolism , Animals , Embryonic Stem Cells/metabolism , Genetic Drift , Genomic Instability , Humans , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/radiotherapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects , Pluripotent Stem Cells/metabolism , Radiation Tolerance/genetics
19.
Bioessays ; 45(1): e2200168, 2023 01.
Article in English | MEDLINE | ID: mdl-36385254

ABSTRACT

Small tandem DNA duplications in the range of 15 to 300 base-pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9-based experimental data from different model systems. Recent work points to fill-in synthesis at double-stranded DNA breaks with complementary sequences, regulated by end-joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain-of-function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy-induced activation of oncogenes and might expose novel vulnerabilities in cancer.


Subject(s)
Chromosome Breakage , DNA End-Joining Repair , Genome, Human , Microsatellite Repeats , Humans , CRISPR-Cas Systems
20.
Plant J ; 116(1): 58-68, 2023 10.
Article in English | MEDLINE | ID: mdl-37340932

ABSTRACT

Non-homologous end joining (NHEJ) plays a major role in repairing DNA double-strand breaks and is key to genome stability and editing. The minimal core NHEJ proteins, namely Ku70, Ku80, DNA ligase IV and XRCC4, are conserved, but other factors vary in different eukaryote groups. In plants, the only known NHEJ proteins are the core factors, while the molecular mechanism of plant NHEJ remains unclear. Here, we report a previously unidentified plant ortholog of PAXX, the crystal structure of which showed a similar fold to human 'PAXX'. However, plant PAXX has similar molecular functions to human XLF, by directly interacting with Ku70/80 and XRCC4. This suggests that plant PAXX combines the roles of mammalian PAXX and XLF and that these functions merged into a single protein during evolution. This is consistent with a redundant function of PAXX and XLF in mammals.


Subject(s)
DNA End-Joining Repair , DNA Repair Enzymes , Animals , Humans , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA , Mammals/genetics , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL