Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.251
Filter
Add more filters

Publication year range
1.
Cell ; 187(2): 464-480.e10, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38242088

ABSTRACT

Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.


Subject(s)
Genome-Wide Association Study , Glaucoma, Open-Angle , Humans , Genetic Predisposition to Disease , Glaucoma, Open-Angle/genetics , Black People/genetics , Polymorphism, Single Nucleotide/genetics
2.
Cell ; 184(16): 4299-4314.e12, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34297923

ABSTRACT

Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cytoprotection , Retinal Ganglion Cells/pathology , Vision, Ocular , Animals , Axons/drug effects , Axons/pathology , Brain/pathology , Cyclic AMP Response Element-Binding Protein/metabolism , Dependovirus/metabolism , Disease Models, Animal , Enzyme Activation/drug effects , Glaucoma/genetics , Glaucoma/pathology , Mice, Inbred C57BL , Neurotoxins/toxicity , Optic Nerve Injuries/pathology , Signal Transduction
3.
Development ; 150(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-36971369

ABSTRACT

Failure of central nervous system projection neurons to spontaneously regenerate long-distance axons underlies irreversibility of white matter pathologies. A barrier to axonal regenerative research is that the axons regenerating in response to experimental treatments stall growth before reaching post-synaptic targets. Here, we test the hypothesis that the interaction of regenerating axons with live oligodendrocytes, which were absent during developmental axon growth, contributes to stalling axonal growth. To test this hypothesis, first, we used single cell RNA-seq (scRNA-seq) and immunohistology to investigate whether post-injury born oligodendrocytes incorporate into the glial scar after optic nerve injury. Then, we administered demyelination-inducing cuprizone and stimulated axon regeneration by Pten knockdown (KD) after optic nerve crush. We found that post-injury born oligodendrocyte lineage cells incorporate into the glial scar, where they are susceptible to the demyelination diet, which reduced their presence in the glial scar. We further found that the demyelination diet enhanced Pten KD-stimulated axon regeneration and that localized cuprizone injection promoted axon regeneration. We also present a resource for comparing the gene expression of scRNA-seq-profiled normal and injured optic nerve oligodendrocyte lineage cells.


Subject(s)
Axons , Demyelinating Diseases , Humans , Axons/physiology , Gliosis/metabolism , Gliosis/pathology , Cuprizone , Nerve Regeneration/physiology , Retinal Ganglion Cells/metabolism , Oligodendroglia , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism
4.
Development ; 150(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-37039265

ABSTRACT

Central nervous system projection neurons fail to spontaneously regenerate injured axons. Targeting developmentally regulated genes in order to reactivate embryonic intrinsic axon growth capacity or targeting pro-growth tumor suppressor genes such as Pten promotes long-distance axon regeneration in only a small subset of injured retinal ganglion cells (RGCs), despite many RGCs regenerating short-distance axons. A recent study identified αRGCs as the primary type that regenerates short-distance axons in response to Pten inhibition, but the rare types which regenerate long-distance axons, and cellular features that enable such response, remained unknown. Here, we used a new method for capturing specifically the rare long-distance axon-regenerating RGCs, and also compared their transcriptomes with embryonic RGCs, in order to answer these questions. We found the existence of adult non-α intrinsically photosensitive M1 RGC subtypes that retained features of embryonic cell state, and showed that these subtypes partially dedifferentiated towards an embryonic state and regenerated long-distance axons in response to Pten inhibition. We also identified Pten inhibition-upregulated mitochondria-associated genes, Dynlt1a and Lars2, which promote axon regeneration on their own, and thus present novel therapeutic targets.


Subject(s)
Amino Acyl-tRNA Synthetases , Optic Nerve Injuries , Amino Acyl-tRNA Synthetases/metabolism , Axons/physiology , Mitochondria , Nerve Regeneration/physiology , Optic Nerve Injuries/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Retinal Ganglion Cells/metabolism
5.
Proc Natl Acad Sci U S A ; 120(34): e2306153120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37566633

ABSTRACT

Although the visual system extends through the brain, most vision loss originates from defects in the eye. Its central element is the neural retina, which senses light, processes visual signals, and transmits them to the rest of the brain through the optic nerve (ON). Surrounding the retina are numerous other structures, conventionally divided into anterior and posterior segments. Here, we used high-throughput single-nucleus RNA sequencing (snRNA-seq) to classify and characterize cells in six extraretinal components of the posterior segment: ON, optic nerve head (ONH), peripheral sclera, peripapillary sclera (PPS), choroid, and retinal pigment epithelium (RPE). Defects in each of these tissues are associated with blinding diseases-for example, glaucoma (ONH and PPS), optic neuritis (ON), retinitis pigmentosa (RPE), and age-related macular degeneration (RPE and choroid). From ~151,000 single nuclei, we identified 37 transcriptomically distinct cell types, including multiple types of astrocytes, oligodendrocytes, fibroblasts, and vascular endothelial cells. Our analyses revealed a differential distribution of many cell types among distinct structures. Together with our previous analyses of the anterior segment and retina, the data presented here complete a "Version 1" cell atlas of the human eye. We used this atlas to map the expression of >180 genes associated with the risk of developing glaucoma, which is known to involve ocular tissues in both anterior and posterior segments as well as the neural retina. Similar methods can be used to investigate numerous additional ocular diseases, many of which are currently untreatable.


Subject(s)
Glaucoma , Optic Disk , Humans , Transcriptome , Endothelial Cells , Glaucoma/genetics , Optic Nerve , Sclera
6.
Mol Ther ; 32(6): 1760-1778, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38659223

ABSTRACT

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.


Subject(s)
Aging , Disease Models, Animal , Glaucoma , Optic Nerve , Retinal Ganglion Cells , Sirtuins , Animals , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Mice , Sirtuins/metabolism , Sirtuins/genetics , Glaucoma/metabolism , Glaucoma/genetics , Glaucoma/pathology , Glaucoma/etiology , Optic Nerve/metabolism , Optic Nerve/pathology , Aging/metabolism , Aging/genetics , Intraocular Pressure , Humans , Axons/metabolism , Axons/pathology , Mice, Knockout , Nerve Degeneration/metabolism
7.
Mol Cell Proteomics ; 22(11): 100654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793503

ABSTRACT

The pathogenesis of glaucoma is still unknown. There are few studies on the dynamic change of tissue-specific and time-specific molecular pathophysiology caused by ocular hypertension (OHT). This study aimed to identify the early proteomic alterations in the retina, optic nerve head (ONH), and optic nerve (ON). After establishing a rat model of OHT, we harvested the tissues from control and glaucomatous eyes and analyzed the changes in protein expression using a multiplexed quantitative proteomics approach (TMT-MS3). Our study identified 6403 proteins after 1-day OHT and 4399 proteins after 7-days OHT in the retina, 5493 proteins after 1-day OHT and 4544 proteins after 7-days OHT in ONH, and 5455 proteins after 1-day OHT and 3835 proteins after 7-days OHT in the ON. Of these, 560 and 489 differential proteins were identified on day 1 and 7 after OHT in the retina, 428 and 761 differential proteins were identified on day 1 and 7 after OHT in the ONH, and 257 and 205 differential proteins on days 1 and 7 after OHT in the ON. Computational analysis on day 1 and 7 of OHT revealed that alpha-2 macroglobulin was upregulated across two time points and three tissues stably. The differentially expressed proteins between day 1 and 7 after OHT in the retina, ONH, and ON were associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, oxidative stress, microtubule, and crystallin. And the most significant change in retina are crystallins. We validated this proteomic result with the Western blot of crystallin proteins and found that upregulated on day 1 but recovered on day 7 after OHT, which are promising as therapeutic targets. These findings provide insights into the time- and region-order mechanisms that are specifically affected in the retina, ONH, and ON in response to elevated IOP during the early stages.


Subject(s)
Crystallins , Glaucoma , Ocular Hypertension , Optic Disk , Rats , Animals , Optic Disk/metabolism , Optic Disk/pathology , Proteomics , Intraocular Pressure , Glaucoma/metabolism , Retina/metabolism , Retina/pathology , Ocular Hypertension/metabolism , Ocular Hypertension/pathology , Optic Nerve/pathology , Crystallins/metabolism
8.
Proc Natl Acad Sci U S A ; 119(10): e2115973119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35235463

ABSTRACT

White matter disorders of the central nervous system (CNS), such as multiple sclerosis (MS), lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems, including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery. Most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined nonhuman primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculomotor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This nonhuman primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair promyelinating/neuroprotective therapies to the clinic for myelin disorders, such as MS.


Subject(s)
Axons , Optic Nerve/pathology , Remyelination , Retina/pathology , Vision Disorders/pathology , Animals , Disease Models, Animal , Evoked Potentials, Visual , Macaca fascicularis , Male , Multiple Sclerosis/pathology , Reflex, Pupillary , Retina/diagnostic imaging , Retina/physiopathology , Tomography, Optical Coherence
9.
Proc Natl Acad Sci U S A ; 119(15): e2113751119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35394873

ABSTRACT

Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell­derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.


Subject(s)
Optic Nerve Injuries , Retinal Ganglion Cells , Axons/metabolism , Chemokine CXCL12/genetics , Monocytes/metabolism , Nerve Regeneration/physiology , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , PTEN Phosphohydrolase/genetics , Retinal Ganglion Cells/physiology
10.
Proc Natl Acad Sci U S A ; 119(44): e2121273119, 2022 11.
Article in English | MEDLINE | ID: mdl-36306327

ABSTRACT

Axon regeneration is an energy-demanding process that requires active mitochondrial transport. In contrast to the central nervous system (CNS), axonal mitochondrial transport in regenerating axons of the peripheral nervous system (PNS) increases within hours and sustains for weeks after injury. Yet, little is known about targeting mitochondria in nervous system repair. Here, we report the induction of sustained axon regeneration, neural activities in the superior colliculus (SC), and visual function recovery after optic nerve crush (ONC) by M1, a small molecule that promotes mitochondrial fusion and transport. We demonstrated that M1 enhanced mitochondrial dynamics in cultured neurons and accelerated in vivo axon regeneration in the PNS. Ex vivo time-lapse imaging and kymograph analysis showed that M1 greatly increased mitochondrial length, axonal mitochondrial motility, and transport velocity in peripheral axons of the sciatic nerves. Following ONC, M1 increased the number of axons regenerating through the optic chiasm into multiple subcortical areas and promoted the recovery of local field potentials in the SC after optogenetic stimulation of retinal ganglion cells, resulting in complete recovery of the pupillary light reflex, and restoration of the response to looming visual stimuli was detected. M1 increased the gene expression of mitochondrial fusion proteins and major axonal transport machinery in both the PNS and CNS neurons without inducing inflammatory responses. The knockdown of two key mitochondrial genes, Opa1 or Mfn2, abolished the growth-promoting effects of M1 after ONC, suggesting that maintaining a highly dynamic mitochondrial population in axons is required for successful CNS axon regeneration.


Subject(s)
Axons , Optic Nerve Injuries , Humans , Axons/metabolism , Mitochondrial Proteins/metabolism , Nerve Crush , Nerve Regeneration/physiology , Optic Nerve/metabolism , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/physiology , Sciatic Nerve/metabolism , Small Molecule Libraries
11.
Genomics ; 116(1): 110776, 2024 01.
Article in English | MEDLINE | ID: mdl-38163571

ABSTRACT

The death of retinal ganglion cells (RGCs) can cause irreversible injury in visual function. Clarifying the mechanism of RGC degeneration is critical for the development of therapeutic strategies. Circular RNAs (circRNAs) are important regulators in many biological and pathological processes. Herein, we performed circRNA microarrays to identify dysregulated circRNAs following optic nerve crush (ONC). The results showed that 221 circRNAs were differentially expressed between ONC retinas and normal retinas. Notably, the levels of circular RNA-Dcaf6 (cDcaf6) expression in aqueous humor of glaucoma patients were higher than that in cataract patients. cDcaf6 silencing could reduce oxidative stress-induced RGC apoptosis in vitro and alleviate retinal neurodegeneration in vivo as shown by increased neuronal nuclei antigen (NeuN, neuronal bodies) and beta-III-tubulin (TUBB3, neuronal filaments) staining and reduced glial fibrillary acidic protein (GFAP, activated glial cells) and vimentin (activated glial cells) staining. Collectively, this study identifies a promising target for treating retinal neurodegeneration.


Subject(s)
Optic Nerve Injuries , RNA, Circular , Animals , Humans , Disease Models, Animal , Optic Nerve/metabolism , Optic Nerve/pathology , Optic Nerve Injuries/genetics , Optic Nerve Injuries/drug therapy , Optic Nerve Injuries/metabolism , Retina , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , RNA, Circular/genetics , RNA, Circular/metabolism
12.
Glia ; 72(9): 1604-1628, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38785355

ABSTRACT

Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.


Subject(s)
Astrocytes , Retina , Astrocytes/metabolism , Animals , Retina/metabolism , Retina/cytology , Mice, Inbred C57BL , Gene Expression Profiling/methods , Mice , Optic Nerve/metabolism , Transcriptome
13.
Glia ; 72(8): 1374-1391, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38587131

ABSTRACT

Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.


Subject(s)
Axons , Glycolysis , L-Lactate Dehydrogenase , Oligodendroglia , Animals , Oligodendroglia/metabolism , Axons/metabolism , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Glycolysis/physiology , Mice , Down-Regulation/physiology , Mice, Inbred C57BL , Lactate Dehydrogenase 5/metabolism , Astrocytes/metabolism , Astrocytes/ultrastructure , Mice, Transgenic , Isoenzymes/metabolism , Isoenzymes/genetics , Gap Junctions/metabolism , Gap Junctions/ultrastructure , Mice, Knockout
14.
Pflugers Arch ; 476(5): 847-859, 2024 May.
Article in English | MEDLINE | ID: mdl-38421407

ABSTRACT

Increases in the current threshold occur in optic nerve axons with the application of infra-red laser light, whose mechanism is only partly understood. In isolated rat optic nerve, laser light was applied near the site of electrical stimulation, via a flexible fibre optic. Paired applications of light produced increases in threshold that were reduced on the second application, the response recovering with increasing delays, with a time constant of 24 s. 3-min duration single applications of laser light gave rise to a rapid increase in threshold followed by a fade, whose time-constant was between 40 and 50 s. After-effects were sometimes apparent following the light application, where the resting threshold was reduced. The increase in threshold was partially blocked by 38.6 mM Li+ in combination with 5  µ M bumetanide, a manoeuvre increasing refractoriness and consistent with axonal depolarization. Assessing the effect of laser light on the nerve input resistance ruled out a previously suggested fall in myelin resistance as contributing to threshold changes. These data appear consistent with an axonal membrane potential that partly relies on temperature-dependent electroneutral Na+ influx, and where fade in the response to the laser may be caused by a gradually diminishing Na+ pump-induced hyperpolarization, in response to falling intracellular [Na+].


Subject(s)
Axons , Lasers , Optic Nerve , Sodium , Animals , Rats , Optic Nerve/metabolism , Sodium/metabolism , Axons/metabolism , Axons/physiology , Axons/radiation effects , Membrane Potentials/physiology , Male , Bumetanide/pharmacology , Rats, Sprague-Dawley
15.
Am J Hum Genet ; 108(7): 1204-1216, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34077762

ABSTRACT

Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy. Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However, manual assessment often suffers from poor accuracy and is time intensive. Here, we show convolutional neural network models can accurately estimate VCDR and VDD for 282,100 images from both UK Biobank and an independent study (Canadian Longitudinal Study on Aging), enabling cross-ancestry epidemiological studies and new genetic discovery for these optic nerve head parameters. Using the AI approach, we perform a systematic comparison of the distribution of VCDR and VDD and compare these with intraocular pressure and glaucoma diagnoses across various genetically determined ancestries, which provides an explanation for the high rates of normal tension glaucoma in East Asia. We then used the large number of AI gradings to conduct a more powerful genome-wide association study (GWAS) of optic nerve head parameters. Using the AI-based gradings increased estimates of heritability by ∼50% for VCDR and VDD. Our GWAS identified more than 200 loci associated with both VCDR and VDD (double the number of loci from previous studies) and uncovered dozens of biological pathways; many of the loci we discovered also confer risk for glaucoma.


Subject(s)
Artificial Intelligence , Glaucoma/genetics , Optic Disk/diagnostic imaging , Adult , Aged , Algorithms , Female , Genome-Wide Association Study , Glaucoma/diagnosis , Glaucoma/pathology , Humans , Image Processing, Computer-Assisted , Inheritance Patterns , Intraocular Pressure , Male , Middle Aged , Nerve Net , Optic Disk/pathology , Photography , Polymorphism, Single Nucleotide , Risk Factors
16.
Biochem Biophys Res Commun ; 700: 149509, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38306929

ABSTRACT

Optic neuropathies, such as glaucoma, are due to progressive retinal ganglion cells (RGCs) degeneration, result in irreversible vision loss. The promising RGCs replacement therapy for restoring vision are impeded by insufficient RGC-like cells sources. The present work was enriched one new type RGC-like cells using two surface markers CD184 and CD171 from human induced pluripotent stem cells (hiPSCs) by FACS sorting firstly. These new kind cells have well proliferation ability and possessed passage tolerance in vitro 2D or 3D spheroids culture, which kept expressing Pax6, Brn3b and ßIII-Tubulin and so on. The transplanted CD184+CD171+ RGC-like cells could survive and integrate into the normal and optic nerve crush (ONC) mice retina, especially they were more inclined to across the optic nerve head and extend to the damaged optic nerve. These data support the feasible application for cell replacement therapy in RGC degenerative diseases, as well as help to develop new commercial cells sorting reagents and establish good manufacturing practice (GMP) grade RGC-like donor cells for further clinical application.


Subject(s)
Induced Pluripotent Stem Cells , Optic Nerve Injuries , Mice , Animals , Humans , Retina , Retinal Ganglion Cells , Optic Nerve , Organoids , Disease Models, Animal , Nerve Crush
17.
J Neurosci Res ; 102(1): e25273, 2024 01.
Article in English | MEDLINE | ID: mdl-38284846

ABSTRACT

Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.


Subject(s)
Optic Nerve , White Matter , Animals , Mice , Mice, Inbred C57BL , Oligodendroglia , Neuroglia , Mammals
18.
J Transl Med ; 22(1): 495, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796496

ABSTRACT

BACKGROUND: The pathophysiology of toxico-nutritional optic neuropathies remains debated, with no clear understanding of the respective roles played by the direct alcohol toxicity, smoking and the often associated vitamin deficiencies, which are risk factors for optic neuropathy. Our aim was to investigate genetic susceptibility in patients with bilateral infraclinical optic neuropathy associated with chronic alcohol use disorder. METHODS: This retrospective cohort study included 102 visually asymptomatic patients with documented alcohol use disorder from a French reference center. Optic neuropathy was identified with optical coherence tomography (OCT), after which genetic susceptibility in the group of affected patients was investigated. Genetic testing was performed using panel sequencing of 87 nuclear genes and complete mitochondrial DNA sequencing. RESULTS: Optic neuropathy was detected in 36% (37/102) of the included patients. Genetic testing of affected patients disclosed two patients (2/30, 6.7%) with optic neuropathy associated with pathogenic variants affecting the SPG7 gene and five patients (5/30, 16.7%) who harbored variants of uncertain significance close to probable pathogenicity in the genes WFS1, LOXL1, MMP19, NR2F1 and PMPCA. No pathogenic mitochondrial DNA variants were found in this group. CONCLUSIONS: OCT can detect presence of asymptomatic optic neuropathy in patients with chronic alcohol use disorder. Furthermore, genetic susceptibility to optic neuropathy in this setting is found in almost a quarter of affected patients. Further studies may clarify the role of preventative measures in patients who might be predisposed to avoidable visual loss and blindness.


Subject(s)
Genetic Predisposition to Disease , Optic Nerve Diseases , Humans , Male , Female , Optic Nerve Diseases/genetics , Middle Aged , Adult , Alcoholism/genetics , Alcoholism/complications , Aged , Retrospective Studies
19.
Exp Eye Res ; 238: 109722, 2024 01.
Article in English | MEDLINE | ID: mdl-37952724

ABSTRACT

We characterize a new experimental model for inducing retinal ganglion cell (RGC) dysfunction and degeneration in mice. C57BL/6J mice were subjected to two acute periods of intraocular pressure (IOP) elevation (50 mmHg for 30 min) by cannulation of the anterior chamber. We used full-field electroretinography and visual evoked potentials (VEPs) to measure subsequent changes in retina and optic nerve function, and histochemical techniques to assess RGC survival and optic nerve structure. In 12 month old mice, a single IOP challenge caused loss and subsequent recovery of RGC function over the following 28 days with minimal cell death and no observed axonal damage. A second identical IOP challenge resulted in persistent RGC dysfunction and significant (36%) loss of RGC somas. This was accompanied by a 16.7% delay in the latency and a 27.6% decrease in the amplitude of the VEP. Severe axonal damage was seen histologically with enlargement of axons, myelin disruption, reduced axon density, and the presence of glial scarring. In contrast, younger 3 month old mice when exposed to a single or repeat IOP challenge showed quicker RGC functional recovery after a single challenge and full functional recovery after a repeat challenge with no detectable optic nerve dysfunction. These data demonstrate a highly reproducible and minimally invasive method for inducing RGC degeneration and axonal damage in mice. Resilience of the optic nerve to damage is highly dependent on animal age. The time-defined nature of functional versus structural loss seen in this model stands to facilitate investigation of neuroglial responses in the retina after IOP injury and the associated evaluation of neuroprotective treatment strategies. Further, the model may be used to investigate the impact of aging and the cellular switch between neurorecovery and neurodegeneration.


Subject(s)
Glaucoma , Intraocular Pressure , Mice , Animals , Evoked Potentials, Visual , Mice, Inbred C57BL , Optic Nerve/pathology , Retina/metabolism , Glaucoma/metabolism , Axons/pathology , Disease Models, Animal
20.
Exp Eye Res ; 245: 109988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964496

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopment disorders characterized by deficits in social interaction and communication, and repetitive or stereotyped behavior. Autistic children are more likely to have vision problems, and ASD is unusually common among blind people. However, the mechanisms behind the vision disorders in autism are unclear. Stabilizing WNT-targeted scaffold protein Axin2 by XAV939 during embryonic development causes overproduction of cortical neurons and leads to autistic-like behaviors in mice. In this study, we investigated the relationship between vision abnormality and autism using an XAV939-induced mouse model of autism. We found that the mice receiving XAV939 had decreased amplitude of bright light-adaptive ERG. The amplitudes and latency of flash visual evoked potential recorded from XAV939-treated mice were lower and longer, respectively than in the control mice, suggesting that XAV939 inhibits visual signal processing and conductance. Anatomically, the diameters of RGC axons were reduced when Axin2 was stabilized during the development, and the optic fibers had defective myelin sheaths and reduced oligodendrocytes. The results suggest that the WNT signaling pathway is crucial for optic nerve development. This study provides experimental evidence that conditions interfering with brain development may also lead to visual problems, which in turn might exaggerate the autistic features in humans.


Subject(s)
Axin Protein , Disease Models, Animal , Evoked Potentials, Visual , Optic Nerve , Animals , Axin Protein/metabolism , Mice , Evoked Potentials, Visual/physiology , Optic Nerve/metabolism , Optic Nerve/pathology , Electroretinography , Mice, Inbred C57BL , Axons/pathology , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Male , Wnt Signaling Pathway/physiology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/metabolism , Autistic Disorder/physiopathology , Autistic Disorder/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL