ABSTRACT
FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.
Subject(s)
Killer Cells, Natural , Membrane Proteins , Animals , Female , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Bone Marrow/metabolism , Cell Lineage , Dendritic Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Langerhans Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Skin/metabolism , Mice, Inbred C57BLABSTRACT
We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.
Subject(s)
CD28 Antigens/deficiency , Inheritance Patterns/genetics , Papillomaviridae/physiology , Skin/virology , T-Lymphocytes/immunology , Adult , Amino Acid Sequence , Animals , Base Sequence , CD28 Antigens/genetics , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Child , Endopeptidases/metabolism , Female , Genes, Recessive , HEK293 Cells , Homozygote , Humans , Immunity, Humoral , Immunologic Memory , Jurkat Cells , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Oncogenes , Papilloma/pathology , Papilloma/virology , Pedigree , Protein Sorting Signals , RNA, Messenger/genetics , RNA, Messenger/metabolismABSTRACT
The most common cancer caused by human papillomavirus (HPV) infection in the United States is oropharyngeal cancer (OPC), and its incidence has been rising since the turn of the century. Because of substantial long-term morbidities with chemoradiation and the favorable prognosis of HPV-positive OPC, identifying the optimal deintensification strategy for this group has been a keystone of academic head-and-neck surgery, radiation oncology, and medical oncology for over the past decade. However, the first generation of randomized chemotherapy deintensification trials failed to change the standard of care, triggering concern over the feasibility of de-escalation. National database studies estimate that up to one third of patients receive nonstandard de-escalated treatments, which have subspecialty-specific nuances. A synthesis of the multidisciplinary deintensification data and current treatment standards is important for the oncology community to reinforce best practices and ensure optimal patient outcomes. In this review, the authors present a summary and comparison of prospective HPV-positive OPC de-escalation trials. Chemotherapy attenuation compromises outcomes without reducing toxicity. Limited data comparing transoral robotic surgery (TORS) with radiation raise concern over toxicity and outcomes with TORS. There are promising data to support de-escalating adjuvant therapy after TORS, but consensus on treatment indications is needed. Encouraging radiation deintensification strategies have been reported (upfront dose reduction and induction chemotherapy-based patient selection), but level I evidence is years away. Ultimately, stage and HPV status may be insufficient to guide de-escalation. The future of deintensification may lie in incorporating intratreatment response assessments to harness the powers of personalized medicine and integrate real-time surveillance.
Subject(s)
Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Human Papillomavirus Viruses , Consensus , Prospective Studies , Oropharyngeal Neoplasms/surgeryABSTRACT
Human papillomavirus (HPV) is currently linked to almost 35,000 new cases of cancer in women and men each year in the United States. Gardasil-9 (Merck & Company), the only HPV vaccine now available in the United States, is nearly 100% effective at preventing precancers caused by oncogenic HPV types. In the United States, however, only about one half of adolescents are up to date with HPV vaccination. It is well known that health care clinicians' recommendations play a significant role in parents' decisions regarding HPV vaccination. A growing body of literature examines specific communication strategies for promoting uptake of the HPV vaccine. A comprehensive review of the evidence for each of these strategies is needed. The authors searched the PubMed, EMBASE, Cochrane Central Register of Controlled Trials, PsycINFO, Cumulative Index to Nursing and Allied Health Literature, and Web of Science Complete databases for original articles with a defined clinician communication strategy and an outcome of HPV vaccine uptake or intention to vaccinate (PROSPERO registry no. CRD42020107602). In total, 46 studies were included. The authors identified two main strategies with strong evidence supporting their positive impact on vaccine uptake: strong recommendation and presumptive recommendation. Determinations about a causal relationship were limited by the small numbers of randomized controlled trials. There is also opportunity for more research to determine the effects of motivational interviewing and cancer-prevention messaging.
Subject(s)
Alphapapillomavirus , Neoplasms , Papillomavirus Infections , Papillomavirus Vaccines , Adolescent , Male , Female , Humans , United States , Papillomavirus Infections/prevention & control , Papillomavirus Infections/complications , Papillomavirus Vaccines/therapeutic use , Vaccination , Communication , Parents , Neoplasms/prevention & controlABSTRACT
Despite being highly preventable, cervical cancer is the fourth most common cancer and cause of cancer death in women globally. In low-income countries, cervical cancer is often the leading cause of cancer-related morbidity and mortality. Women living with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome are at a particularly high risk of cervical cancer because of an impaired immune response to human papillomavirus, the obligate cause of virtually all cervical cancers. Globally, approximately 1 in 20 cervical cancers is attributable to HIV; in sub-Saharan Africa, approximately 1 in 5 cervical cancers is due to HIV. Here, the authors provide a critical appraisal of the evidence to date on the impact of HIV disease on cervical cancer risk, describe key methodologic issues, and frame the key outstanding research questions, especially as they apply to ongoing global efforts for prevention and control of cervical cancer. Expanded efforts to integrate HIV care with cervical cancer prevention and control, and vice versa, could assist the global effort to eliminate cervical cancer as a public health problem.
Subject(s)
HIV Infections/epidemiology , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Early Detection of Cancer , Female , Humans , Immunocompromised Host , Papillomavirus Infections , Papillomavirus Vaccines , Precancerous Conditions/therapy , Primary Prevention , Secondary PreventionABSTRACT
Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.
Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Chromosome Aberrations , Telomere/genetics , DNAABSTRACT
The American Cancer Society (ACS) presents an adaptation of the current Advisory Committee on Immunization Practices recommendations for human papillomavirus (HPV) vaccination. The ACS recommends routine HPV vaccination between ages 9 and 12 years to achieve higher on-time vaccination rates, which will lead to increased numbers of cancers prevented. Health care providers are encouraged to start offering the HPV vaccine series at age 9 or 10 years. Catch-up HPV vaccination is recommended for all persons through age 26 years who are not adequately vaccinated. Providers should inform individuals aged 22 to 26 years who have not been previously vaccinated or who have not completed the series that vaccination at older ages is less effective in lowering cancer risk. Catch-up HPV vaccination is not recommended for adults aged older than 26 years. The ACS does not endorse the 2019 Advisory Committee on Immunization Practices recommendation for shared clinical decision making for some adults aged 27 through 45 years who are not adequately vaccinated because of the low effectiveness and low cancer prevention potential of vaccination in this age group, the burden of decision making on patients and clinicians, and the lack of sufficient guidance on the selection of individuals who might benefit.
Subject(s)
Immunization Schedule , Mass Vaccination/standards , Neoplasms/prevention & control , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Adolescent , Adult , Advisory Committees/standards , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , American Cancer Society/organization & administration , Child , Clinical Competence , Female , Health Personnel/education , Health Plan Implementation/organization & administration , Health Plan Implementation/standards , Humans , Intersectoral Collaboration , Mass Vaccination/organization & administration , Middle Aged , Neoplasms/pathology , Neoplasms/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , United States , Vaccination Coverage/organization & administration , Vaccination Coverage/standards , Young AdultABSTRACT
Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.
Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Chromosomal Instability , Chromosomes/metabolism , Human papillomavirus 16/genetics , Kinesins/genetics , Kinesins/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolismABSTRACT
A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.
Subject(s)
Papillomavirus Infections , Mice , Female , Humans , Animals , Papillomavirus Infections/genetics , Keratin-17 , Mice, Transgenic , Immunity , Papillomaviridae/genetics , EstrogensABSTRACT
The activity of proteins is thought to be invariably determined by their amino acid sequence or composition, but we show that a long segment of a viral protein can support infection independent of its sequence or composition. During virus entry, the papillomavirus L2 capsid protein protrudes through the endosome membrane into the cytoplasm to bind cellular factors such as retromer required for intracellular virus trafficking. Here, we show that an ~110 amino acid segment of L2 is predicted to be disordered and that large deletions in this segment abolish infectivity of HPV16 pseudoviruses by inhibiting cytoplasmic protrusion of L2, association with retromer, and proper virus trafficking. The activity of these mutants can be restored by insertion of protein segments with diverse sequences, compositions, and chemical properties, including scrambled amino acid sequences, a tandem array of a short sequence, and the intrinsically disordered region of an unrelated cellular protein. The infectivity of mutants with small in-frame deletions in this segment directly correlates with the size of the segment. These results indicate that the length of the disordered segment, not its sequence or composition, determines its activity during HPV16 pseudovirus infection. We propose that a minimal length of L2 is required for it to protrude far enough into the cytoplasm to bind cytoplasmic trafficking factors, but the sequence of this segment is largely irrelevant. Thus, protein segments can carry out complex biological functions such as Human papillomavirus pseudovirus infection in a sequence-independent manner. This finding has important implications for protein function and evolution.
Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Capsid Proteins/chemistry , Human Papillomavirus Viruses , Virus Internalization , HeLa Cells , Capsid/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/chemistryABSTRACT
The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.
Subject(s)
Cytoskeletal Proteins , Viruses , Humans , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Viruses/metabolism , Microtubules/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , Kinesins/metabolism , Dyneins/metabolismABSTRACT
Persistent high-risk HPV infection is closely associated with cervical cancer development, and there is no drug targeting HPV on the market at present, so it is particularly important to understand the interaction mechanism between HPV and the host which may provide the novel strategies for treating HPV diseases. HPV can hijack cell surface heparan sulfate proteoglycans (HSPGs) as primary receptors. However, the secondary entry receptors for HPV remain elusive. We identify myosin-9 (NMHC-IIA) as a host factor that interacts with HPV L1 protein and mediates HPV internalization. Efficient HPV entry required myosin-9 redistribution to the cell surface regulated by HPV-hijacked MEK-MLCK signaling. Myosin-9 maldistribution by ML-7 or ML-9 significantly inhibited HPV pseudoviruses infection in vitro and in vivo. Meanwhile, N-glycans, especially the galactose chains, may act as the decoy receptors for HPV, which can block the interaction of HPV to myosin-9 and influence the way of HPV infection. Taken together, we identify myosin-9 as a novel functional entry receptor for high-risk HPV both in vitro and in vivo, and unravel the new roles of myosin-9 and N-glycans in HPV entry, which provides the possibilities for host targets of antiviral drugs.
Subject(s)
Human Papillomavirus Viruses , Papillomavirus Infections , Virus Internalization , Humans , Cytoskeletal Proteins , Heparan Sulfate Proteoglycans/metabolism , Myosins , Cell Line , Animals , Cricetinae , Cricetulus , Polysaccharides/metabolismABSTRACT
Most cervical cancers are caused by human papillomavirus (HPV) infection. In HeLa cells, the HPV18 viral genome is integrated at chromosome 8q24.21 and activates transcription of the proto-oncogene c-Myc. However, the mechanism of how the integrated HPV genome and its transcribed RNAs exhibit transcription activation function has not been fully elucidated. In this study, we found that HPV18 transcripts contain an enhancer RNA-like function to activate proximal genes including CCAT1-5L and c-Myc. We showed that the human genome-integrated HPV18 genes are activated by transcription coregulators including BRD4 and Mediator. The transcribed HPV18 RNAs form a liquid-like condensate at chromosome 8q24.21 locus, which in turn accumulates RNA polymerase II. Moreover, we focused on a relatively uncharacterized transcript from the upstream region of CCAT1, named URC. The URC RNA is transcribed as a chimera RNA with HPV18 and is composed of the 3'-untranslated region of the HPV18 transcript. We experimentally showed that the URC contributes to stabilization of HPV18 RNAs by supplying a polyadenylation site for the HPV18 transcript. Our findings suggest that integrated HPV18 at 8q24.21 locus produces HPV18-URC chimera RNA and promotes tumorigenesis through RNA-based condensate formation.
Subject(s)
Genome, Viral , Human papillomavirus 18 , Proto-Oncogene Mas , Humans , Human papillomavirus 18/genetics , HeLa Cells , RNA, Viral/genetics , RNA, Viral/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , Virus Integration , Transcription, Genetic , Female , Genome, Human , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Bromodomain Containing ProteinsABSTRACT
The mRNAs encoding the human papillomavirus type 16 (HPV16) E6 and E7 oncogene mRNAs are subjected to extensive alternative RNA splicing at multiple regulated splice sites. One of the most extensively used 5'-splice sites in the HPV16 genome is named SD880 and is located immediately downstream of the E7 open reading frame. Here, we show that a cluster of three GGG-motifs adjacent to HPV16 SD880 interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) H that cooperates with SD880 to stimulate splicing to the upstream HPV16 3'-splice site SA742. This splice site is located in the E7 coding region and is required for the production of the HPV16 226^742 mRNA that encodes the E6^E7 fusion protein. Enhancement of HPV16 E6^E7 mRNA production by hnRNP H occurred at the expense of the intron-retained E6 mRNAs and the spliced E7 mRNAs, demonstrating that hnRNP H controls the relative levels of E6, E7, and E6^E7 proteins. Unexpectedly, overexpression of hnRNP H also promoted retention of the downstream E1 encoding intron and enhanced E1 protein production. We concluded that hnRNP H plays an important role in the HPV16 gene expression program.IMPORTANCEHere, we show that hnRNP H binds to multiple GGG-motifs downstream of human papillomavirus type 16 (HPV16) splice site SD880 and acts in concert with SD880 to promote expression of the HPV16 E6^E7 mRNA. The E6^E7 protein has been shown previously to stabilize the HPV16 E6 and E7 oncoproteins and may as such contribute to the carcinogenic properties of HPV16. In its capacity of major regulator of HPV16 oncogene expression, hnRNP H may be exploited as a target for antiviral drugs to HPV16.
Subject(s)
Alternative Splicing , Heterogeneous-Nuclear Ribonucleoprotein Group F-H , Human papillomavirus 16 , Oncogene Proteins, Viral , RNA, Messenger , Repressor Proteins , Humans , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA Splice Sites , Gene Expression Regulation, Viral , Nucleotide MotifsABSTRACT
Epidermodysplasia verruciformis (EV) is a rare genetic skin disorder that is characterized by the development of papillomavirus-induced skin lesions that can progress to squamous cell carcinoma (SCC). Certain high-risk, cutaneous ß-genus human papillomaviruses (ß-HPVs), in particular HPV5 and HPV8, are associated with inducing EV in individuals who have a homozygous mutation in one of three genes tied to this disease: EVER1, EVER2, or CIB1. EVER1 and EVER2 are also known as TMC6 and TMC8, respectively. Little is known about the biochemical activities of EVER gene products or their roles in facilitating EV in conjunction with ß-HPV infection. To investigate the potential effect of EVER genes on papillomavirus infection, we pursued in vivo infection studies by infecting Ever2-null mice with mouse papillomavirus (MmuPV1). MmuPV1 shares characteristics with ß-HPVs including similar genome organization, shared molecular activities of their early, E6 and E7, oncoproteins, the lack of a viral E5 gene, and the capacity to cause skin lesions that can progress to SCC. MmuPV1 infections were conducted both in the presence and absence of UVB irradiation, which is known to increase the risk of MmuPV1-induced pathogenesis. Infection with MmuPV1 induced skin lesions in both wild-type and Ever2-null mice with and without UVB. Many lesions in both genotypes progressed to malignancy, and the disease severity did not differ between Ever2-null and wild-type mice. However, somewhat surprisingly, lesion growth and viral transcription was decreased, and lesion regression was increased in Ever2-null mice compared with wild-type mice. These studies demonstrate that Ever2-null mice infected with MmuPV1 do not exhibit the same phenotype as human EV patients infected with ß-HPVs.IMPORTANCEHumans with homozygous mutations in the EVER2 gene develop epidermodysplasia verruciformis (EV), a disease characterized by predisposition to persistent ß-genus human papillomavirus (ß-HPV) skin infections, which can progress to skin cancer. To investigate how EVER2 confers protection from papillomaviruses, we infected the skin of homozygous Ever2-null mice with mouse papillomavirus MmuPV1. Like in humans with EV, infected Ever2-null mice developed skin lesions that could progress to cancer. Unlike in humans with EV, lesions in these Ever2-null mice grew more slowly and regressed more frequently than in wild-type mice. MmuPV1 transcription was higher in wild-type mice than in Ever2-null mice, indicating that mouse EVER2 does not confer protection from papillomaviruses. These findings suggest that there are functional differences between MmuPV1 and ß-HPVs and/or between mouse and human EVER2.
Subject(s)
Epidermodysplasia Verruciformis , Mice, Knockout , Papillomavirus Infections , Animals , Mice , Epidermodysplasia Verruciformis/virology , Epidermodysplasia Verruciformis/genetics , Epidermodysplasia Verruciformis/pathology , Papillomavirus Infections/virology , Papillomavirus Infections/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Papillomaviridae/genetics , Papillomaviridae/pathogenicity , Betapapillomavirus/genetics , Betapapillomavirus/pathogenicity , Humans , Disease Susceptibility , Female , Mice, Inbred C57BL , Disease Models, Animal , Skin Neoplasms/virology , Skin Neoplasms/pathology , Skin Neoplasms/geneticsABSTRACT
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE: Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.
Subject(s)
Coculture Techniques , Estrogen Receptor alpha , Fibroblasts , Papillomavirus Infections , Humans , Estrogen Receptor alpha/metabolism , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , Fibroblasts/virology , Fibroblasts/metabolism , Tumor Microenvironment , Oropharyngeal Neoplasms/virology , Oropharyngeal Neoplasms/metabolism , Papillomaviridae/drug effects , Papillomaviridae/physiology , Keratinocytes/virology , Keratinocytes/metabolism , Stromal Cells/metabolism , Stromal Cells/virology , Estrogens/metabolism , Estrogens/pharmacology , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Human Papillomavirus VirusesABSTRACT
We have demonstrated that SAMHD1 (sterile alpha motif and histidine-aspartic domain HD-containing protein 1) is a restriction factor for the human papillomavirus 16 (HPV16) life cycle. Here, we demonstrate that in HPV-negative cervical cancer C33a cells and human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16), SAMHD1 is recruited to E1-E2 replicating DNA. Homologous recombination (HR) factors are required for HPV16 replication, and viral replication promotes phosphorylation of SAMHD1, which converts it from a dNTPase to an HR factor independent from E6/E7 expression. A SAMHD1 phospho-mimic (SAMHD1 T592D) reduces E1-E2-mediated DNA replication in C33a cells and has enhanced recruitment to the replicating DNA. In HFK+HPV16 cells, SAMHD1 T592D is recruited to the viral DNA and attenuates cellular growth, but does not attenuate growth in isogenic HFK cells immortalized by E6/E7 alone. SAMHD1 T592D also attenuates the development of viral replication foci following keratinocyte differentiation. The results indicated that enhanced SAMHD1 phosphorylation could be therapeutically beneficial in cells with HPV16 replicating genomes. Protein phosphatase 2A (PP2A) can dephosphorylate SAMHD1, and PP2A function can be inhibited by endothall. We demonstrate that endothall reduces E1-E2 replication and promotes SAMHD1 recruitment to E1-E2 replicating DNA, mimicking the SAMHD1 T592D phenotypes. Finally, we demonstrate that in head and neck cancer cell lines with HPV16 episomal genomes, endothall attenuates their growth and promotes recruitment of SAMHD1 to the viral genome. The results suggest that targeting cellular phosphatases has therapeutic potential for the treatment of HPV infections and cancers. IMPORTANCE: Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. The development of anti-viral therapeutics depends upon an increased understanding of the viral life cycle. Here, we demonstrate that HPV16 replication converts sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) into a homologous recombination (HR) factor via phosphorylation. This phosphorylation promotes recruitment of SAMHD1 to viral DNA to assist with replication. A SAMHD1 mutant that mimics phosphorylation is hyper-recruited to viral DNA and attenuates viral replication. Expression of this mutant in HPV16-immortalized cells attenuates the growth of these cells, but not cells immortalized by the viral oncogenes E6/E7 alone. Finally, we demonstrate that the phosphatase inhibitor endothall promotes hyper-recruitment of endogenous SAMHD1 to HPV16 replicating DNA and can attenuate the growth of both HPV16-immortalized human foreskin keratinocytes (HFKs) and HPV16-positive head and neck cancer cell lines. We propose that phosphatase inhibitors represent a novel tool for combating HPV infections and disease.
Subject(s)
DNA, Viral , Human papillomavirus 16 , Keratinocytes , SAM Domain and HD Domain-Containing Protein 1 , Virus Replication , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/genetics , Humans , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Human papillomavirus 16/physiology , DNA, Viral/genetics , DNA, Viral/metabolism , Keratinocytes/virology , Keratinocytes/metabolism , Phosphorylation , Cell Line, Tumor , Homologous Recombination , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , Papillomavirus Infections/genetics , DNA ReplicationABSTRACT
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Subject(s)
Cullin Proteins , Head and Neck Neoplasms , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Papillomavirus Infections , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , Head and Neck Neoplasms/genetics , Human Papillomavirus Viruses , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/pathology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolismABSTRACT
A single dose of human papillomavirus (HPV) vaccine against HPV infection (prerequisite for cervical cancer) appears to be as efficacious as two or three doses, despite inducing lower antibody titers. Neutralizing antibodies are thought to be the primary mediator of protection, but the threshold for protection is unknown. Antibody functions beyond neutralization have not been explored for HPV vaccines. Here, we discuss the immune mechanisms of HPV vaccines, with a focus on non-neutralizing antibody effector functions. In the context of single-dose HPV vaccination where antibody is limiting, we propose that non-neutralizing antibody functions may contribute to preventing HPV infection. Understanding the immunological basis of protection for single-dose HPV vaccination will provide a rationale for implementing single-dose HPV vaccine regimens.
Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18 , Humans , Papillomavirus Infections/prevention & controlABSTRACT
Human papillomavirus (HPV) infection is one of the most common sexually transmitted infections worldwide. It is caused by the HPV, a DNA virus that infects epithelial cells in various mucous membranes and skin surfaces. HPV can be categorised into high-risk and low-risk types based on their association with the development of certain cancers. High-risk HPV types, such as HPV-16 and HPV-18, are known to be oncogenic and are strongly associated with the development of cervical, anal, vaginal, vulvar, penile, and oropharyngeal cancers. These types of HPV can persist in the body for an extended period and, in some cases, lead to the formation of precancerous lesions that may progress to cancer if left untreated. Low-risk HPV types, such as HPV-6 and HPV-11, are not typically associated with cancer but can cause benign conditions like genital warts. Genital warts are characterised by the growth of small, cauliflower-like bumps on the genital and anal areas. Although not life-threatening, they can cause discomfort and psychological distress. HPV is primarily transmitted through sexual contact, including vaginal, anal, and oral sex. It can also be transmitted through non-penetrative sexual activities that involve skin-to-skin contact. In addition to sexual transmission, vertical transmission from mother to child during childbirth is possible but relatively rare. Prevention of HPV infection includes vaccination and safe sexual practices. HPV vaccines, such as Gardasil and Cervarix, are highly effective in preventing infection with the most common high-risk HPV types. These vaccines are typically administered to adolescents and young adults before they become sexually active. Safe sexual practices, such as consistent and correct condom use and limiting the number of sexual partners, can also reduce the risk of HPV transmission. Diagnosis of HPV infection can be challenging because the infection is often asymptomatic, especially in men. In women, HPV testing can be done through cervical screening programs, which involve the collection of cervical cells for analysis. Abnormal results may lead to further diagnostic procedures, such as colposcopy or biopsy, to detect precancerous or cancerous changes. Overall, HPV infection is a prevalent sexually transmitted infection with significant implications for public health. Vaccination, regular screening, and early treatment of precancerous lesions are key strategies to reduce the burden of HPV-related diseases and their associated complications. Education and awareness about HPV and its prevention are crucial in promoting optimal sexual health. This study aimed to carry out a literature review considering several aspects involving HPV infection: Global distribution, prevalence, biology, host interactions, cancer development, prevention, therapeutics, coinfection with other viruses, coinfection with bacteria, association with head and neck squamous cell carcinomas, and association with anal cancer.