Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
Add more filters

Publication year range
1.
Plant J ; 115(4): 1151-1162, 2023 08.
Article in English | MEDLINE | ID: mdl-37265080

ABSTRACT

The modification of photosynthesis-related genes in plastid genomes may improve crop yields. Recently, we reported that a plastid-targeting base editor named ptpTALECD, in which a cytidine deaminase DddA functions as the catalytic domain, can homoplasmically substitute a targeted C to T in plastid genomes of Arabidopsis thaliana. However, some target Cs were not substituted. In addition, although ptpTALECD could substitute Cs on the 3' side of T and A, it was unclear whether it could also substitute Cs on the 3' side of G and C. In this study, we identified the preferential positions of the substituted Cs in ptpTALECD-targeting sequences in the Arabidopsis plastid genome. We also found that ptpTALECD could substitute Cs on the 3' side of all four bases in plastid genomes of Arabidopsis. More recently, a base editor containing an improved version of DddA (DddA11) was reported to substitute Cs more efficiently, and to substitute Cs on the 3' side of more varieties of bases in human mitochondrial genomes than a base editor containing DddA. Here, we also show that ptpTALECD_v2, in which a modified version of DddA11 functions as the catalytic domain, more frequently substituted Cs than ptpTALECD in the Arabidopsis plastid genome. We also found that ptpTALECD_v2 tended to substitute Cs at more positions than ptpTALECD. Our results reveal that ptpTALECD can cause a greater variety of codon changes and amino acid substitutions than previously thought, and that ptpTALECD and ptpTALECD_v2 are useful tools for the targeted base editing of plastid genomes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Genome, Plastid , Humans , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mitochondria/metabolism , Plastids/genetics , Plastids/metabolism , Genome, Plastid/genetics
2.
BMC Genomics ; 25(1): 247, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443830

ABSTRACT

BACKGROUND: Ampelopsideae J. Wen & Z.L. Nie is a small-sized tribe of Vitaceae Juss., including ca. 47 species from four genera showing a disjunct distribution worldwide across all the continents except Antarctica. There are numerous species from the tribe that are commonly used as medicinal plants with immune-modulating, antimicrobial, and anti-hypertensive properties. The tribe is usually recognized into three clades, i.e., Ampelopsis Michx., Nekemias Raf., and the Southern Hemisphere clade. However, the relationships of the three clades differ greatly between the nuclear and the plastid topologies. There has been limited exploration of the chloroplast phylogenetic relationships within Ampelopsideae, and studies on the chloroplast genome structure of this tribe are only available for a few individuals. In this study, we aimed to investigate the evolutionary characteristics of plastid genomes of the tribe, including their genome structure and evolutionary insights. RESULTS: We sequenced, assembled, and annotated plastid genomes of 36 species from the tribe and related taxa in the family. Three main clades were recognized within Ampelopsideae, corresponding to Ampelopsis, Nekemias, and the Southern Hemisphere lineage, respectively, and all with 100% bootstrap supports. The genome sequences and content of the tribe are highly conserved. However, comparative analyses suggested that the plastomes of Nekemias demonstrate a contraction in the large single copy region and an expansion in the inverted repeat region, and possess a high number of forward and palindromic repeat sequences distinct from both Ampelopsis and the Southern Hemisphere taxa. CONCLUSIONS: Our results highlighted plastome variations in genome length, expansion or contraction of the inverted repeat region, codon usage bias, and repeat sequences, are corresponding to the three lineages of the tribe, which probably faced with different environmental selection pressures and evolutionary history. This study provides valuable insights into understanding the evolutionary patterns of plastid genomes within the Ampelopsideae of Vitaceae.


Subject(s)
Genome, Chloroplast , Genome, Plastid , Vitaceae , Humans , Phylogeny , Antarctic Regions
3.
BMC Genomics ; 25(1): 854, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266974

ABSTRACT

BACKGROUND: Endemic plants are key to understanding the evolutionary history and enhancing biodiversity within their unique regions, while also offering significant economic potential. The East Asian endemic genus Corchoropsis Siebold & Zucc., classified within the subfamily Dombeyoideae of Malvaceae s.l., comprises three species. RESULTS: This study characterizes the complete plastid genomes (plastomes) of C. crenata var. crenata Siebold & Zucc. and C. crenata var. hupehensis Pamp., which range from 160,093 to 160,724 bp. These genomes contain 78 plastid protein-coding genes, 30 tRNA, and four rRNA, except for one pseudogene, infA. A total of 316 molecular diagnostic characters (MDCs) specific to Corchoropsis were identified. In addition, 91 to 92 simple sequence repeats (SSRs) in C. crenata var. crenata and 75 in C. crenata var. hupehensis were found. Moreover, 49 long repeats were identified in both the Chinese C. crenata var. crenata and C. crenata var. hupehensis, while 52 were found in the South Korean C. crenata var. crenata. Our phylogenetic analyses, based on 78 plastid protein-coding genes, reveal nine subfamilies within the Malvaceae s.l. with high support values and confirm Corchoropsis as a member of Dombeyoideae. Molecular dating suggests that Corchoropsis originated in the Oligocene, and diverged during the Miocene, influenced by the climate shift at the Eocene-Oligocene boundary. CONCLUSIONS: The research explores the evolutionary relationships between nine subfamilies within the Malvaceae s.l. family, specifically identifying the position of the Corchoropsis in the Dombeyoideae. Utilizing plastome sequences and fossil data, the study establishes that Corchoropsis first appeared during the Eocene and experienced further evolutionary divergence during the Miocene, paralleling the evolutionary patterns observed in other East Asian endemic species.


Subject(s)
Genome, Plastid , Malvaceae , Phylogeny , Asia, Eastern , Evolution, Molecular , Genomics/methods , Microsatellite Repeats , Plastids/genetics , Malvaceae/classification , Malvaceae/genetics
4.
Curr Issues Mol Biol ; 46(9): 9807-9820, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39329934

ABSTRACT

In order to understand the bias and main affecting factors of codon usage in the plastid genome of Diplandrorchis sinica, which is a rare and endangered plant species in the Orchidaceae family, the complete plastid genome sequence of D. sinica was downloaded from the GenBank database and 20 protein-coding sequences that met the analysis requirements were finally selected. The GC content, length of the amino acid (Laa), relative synonymous codon usage (RSCU), and effective number of codon (ENC) of each gene and codon were calculated using the CodonW and EMBOSS online programs. Neutral plot analysis, ENC-plot analysis, PR2-plot analysis, and correspondence analysis were performed using Origin Pro 2024 software, and correlation analysis between various indicators was performed using SPSS 23.0 software. The results showed that the third base of the codon in the plastid genome of D. sinica was rich in A and T, with a GC3 content of 27%, which was lower than that of GC1 (45%) and GC2 (39%). The ENC value ranged from 35 to 57, with an average of 47. The codon usage bias was relatively low, and there was a significant positive correlation between ENC and GC3. There were a total of 32 codons with RSCU values greater than 1, of which 30 ended with either A or U. There were a total of nine optimal codons identified, namely, UCU, UCC, UCA, GCA, UUG, AUA, CGU, CGA, and GGU. This study indicated that the dominant factor affecting codon usage bias in the plastid genome of D. sinica was natural selection pressure, while the impact of base mutations was limited. The codon usage patterns were not closely related to gene types, and the distribution of photosynthetic system genes and ribosomal protein-coding gene loci was relatively scattered, indicating significant differences in the usage patterns of these gene codons. In addition, the codon usage patterns may not be related to whether the plant is a photosynthetic autotrophic or heterotrophic nutritional type. The results of this study could provide scientific references for the genomic evolution and phylogenetic research of plant species in the family Orchidaceae.

5.
Trends Genet ; 37(11): 955-957, 2021 11.
Article in English | MEDLINE | ID: mdl-34412923

ABSTRACT

Transformation of the chloroplast genome offers key advantages over traditional methods for generating transgenic plants, but this approach is limited to a few plant species. Nakazato et al. have developed a novel technique that will help to extend the technology to other plant species that are recalcitrant to current tissue culture-based chloroplast transformation protocols.


Subject(s)
Chloroplasts , Genome, Plastid , Plants, Genetically Modified , Chloroplasts/genetics , Genome, Plant/genetics , Genome, Plastid/genetics , Plants, Genetically Modified/genetics
6.
BMC Plant Biol ; 24(1): 456, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789931

ABSTRACT

BACKGROUND: Baolia H.W.Kung & G.L.Chu is a monotypic genus only known in Diebu County, Gansu Province, China. Its systematic position is contradictory, and its morphoanatomical characters deviate from all other Chenopodiaceae. Recent study has regarded Baolia as a sister group to Corispermoideae. We therefore sequenced and compared the chloroplast genomes of this species, and resolved its phylogenetic position based on both chloroplast genomes and marker sequences. RESULTS: We sequenced 18 chloroplast genomes of 16 samples from two populations of Baolia bracteata and two Corispermum species. These genomes of Baolia ranged in size from 152,499 to 152,508 bp. Simple sequence repeats (SSRs) were primarily located in the LSC region of Baolia chloroplast genomes, and most of them consisted of single nucleotide A/T repeat sequences. Notably, there were differences in the types and numbers of SSRs between the two populations of B. bracteata. Our phylogenetic analysis, based on both complete chloroplast genomes from 33 species and a combination of three markers (ITS, rbcL, and matK) from 91 species, revealed that Baolia and Corispermoideae (Agriophyllum, Anthochlamys, and Corispermum) form a well-supported clade and sister to Acroglochin. According to our molecular dating results, a major divergence event between Acroglochin, Baolia, and Corispermeae occurred during the Middle Eocene, approximately 44.49 mya. Ancestral state reconstruction analysis showed that Baolia exhibited symplesiomorphies with those found in core Corispermoideae characteristics including pericarp and seed coat. CONCLUSIONS: Comparing the chloroplast genomes of B. bracteata with those of eleven typical Chenopodioideae and Corispermoideae species, we observed a high overall similarity and a one notable noteworthy case of inversion of approximately 3,100 bp. of DNA segments only in two Atriplex and four Chenopodium species. We suggest that Corispermoideae should be considered in a broader sense, it includes Corispermeae (core Corispermoideae: Agriophyllum, Anthochlamys, and Corispermum), as well as two new monotypic tribes, Acroglochineae (Acroglochin) and Baolieae (Baolia).


Subject(s)
Amaranthaceae , Genome, Chloroplast , Phylogeny , Amaranthaceae/genetics , Amaranthaceae/anatomy & histology , Amaranthaceae/classification , Microsatellite Repeats , China , DNA, Chloroplast/genetics , Sequence Analysis, DNA , Genetic Markers
7.
Planta ; 260(1): 14, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829418

ABSTRACT

MAIN CONCLUSION: Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.


Subject(s)
Cycadopsida , Genome, Mitochondrial , Genome, Plant , Cycadopsida/genetics , Genome, Plant/genetics , Genome, Mitochondrial/genetics , Genome, Plastid/genetics , Evolution, Molecular , Phylogeny , Biological Evolution
8.
Mol Phylogenet Evol ; 190: 107961, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918684

ABSTRACT

The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.


Subject(s)
Rosaceae , Phylogeny , Plastids/genetics , Argentina
9.
Ann Bot ; 133(3): 427-434, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38141228

ABSTRACT

BACKGROUND AND AIMS: Organelle genomes are usually maternally inherited in angiosperms. However, biparental inheritance has been observed, especially in hybrids resulting from crosses between divergent genetic lineages. When it concerns the plastid genome, this exceptional mode of inheritance might rescue inter-lineage hybrids suffering from plastid-nuclear incompatibilities. Genetically differentiated lineages of Silene nutans exhibit strong postzygotic isolation owing to plastid-nuclear incompatibilities, highlighted by inter-lineage hybrid chlorosis and mortality. Surviving hybrids can exhibit variegated leaves, which might indicate paternal leakage of the plastid genome. We tested whether the surviving hybrids inherited the paternal plastid genome and survived thanks to paternal leakage. METHODS: We characterized the leaf phenotype (fully green, variegated or white) of 504 surviving inter-lineage hybrids obtained from a reciprocal cross experiment among populations of four genetic lineages (W1, W2, W3 and E1) of S. nutans from Western Europe and genotyped 560 leaf samples (both green and white leaves for variegated hybrids) using six lineage-specific plastid single nucleotide polymorphisms. KEY RESULTS: A high proportion of the surviving hybrids (≤98 %) inherited the paternal plastid genome, indicating paternal leakage. The level of paternal leakage depended on cross type and cross direction. The E1 and W2 lineages as maternal lineages led to the highest hybrid mortality and to the highest paternal leakage from W1 and W3 lineages in the few surviving hybrids. This was consistent with E1 and W2 lineages, which contained the most divergent plastid genomes. When W3 was the mother, more hybrids survived, and no paternal leakage was detected. CONCLUSIONS: By providing a plastid genome potentially more compatible with the hybrid nuclear background, paternal leakage has the potential to rescue inter-lineage hybrids from plastid-nuclear incompatibilities. This phenomenon might slow down the speciation process, provided hybrid survival and reproduction can occur in the wild.


Subject(s)
Magnoliopsida , Silene , Silene/genetics , Plastids/genetics , Genotype , Inheritance Patterns , Magnoliopsida/genetics
10.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473781

ABSTRACT

The Tripterospermum, comprising 34 species, is a genus of Gentianaceae. Members of Tripterospermum are mostly perennial, entwined herbs with high medicinal value and rich in iridoids, xanthones, flavonoids, and triterpenes. However, our inadequate understanding of the differences in the plastid genome sequences of Tripterospermum species has severely hindered the study of their evolution and phylogeny. Therefore, we first analyzed the 86 Gentianae plastid genomes to explore the phylogenetic relationships within the Gentianae subfamily where Tripterospermum is located. Then, we analyzed six plastid genomes of Tripterospermum, including two newly sequenced plastid genomes and four previously published plastid genomes, to explore the plastid genomes' evolution and phylogenetic relationships in the genus Tripterospermum. The Tripterospermum plastomes have a quadripartite structure and are between 150,929 and 151,350 bp in size. The plastomes of Tripterospermum encoding 134 genes were detected, including 86 protein-coding genes (CDS), 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and three pseudogenes (infA, rps19, and ycf1). The result of the comparison shows that the Tripterospermum plastomes are very conserved, with the total plastome GC content ranging from 37.70% to 37.79%. In repeat sequence analysis, the number of single nucleotide repeats (A/T) varies among the six Tripterospermum species, and the identified main long repeat types are forward and palindromic repeats. The degree of conservation is higher at the SC/IR boundary. The regions with the highest divergence in the CDS and the intergenic region (IGS) are psaI and rrn4.5-rrn5, respectively. The average pi of the CDS and the IGS are only 0.071% and 0.232%, respectively, indicating that the Tripterospermum plastomes are highly conserved. Phylogenetic analysis indicated that Gentianinae is divided into two clades, with Tripterospermum as a sister to Sinogeniana. Phylogenetic trees based on CDS and CDS + IGS combined matrices have strong support in Tripterospermum. These findings contribute to the elucidation of the plastid genome evolution of Tripterospermum and provide a foundation for further exploration and resource utilization within this genus.


Subject(s)
Genome, Plastid , Gentianaceae , Phylogeny , Evolution, Molecular
11.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063115

ABSTRACT

Tulipa L. is a genus of significant economic, environmental, and cultural importance in several parts of the world. The exact number of species in the genus remains uncertain due to inherent taxonomic challenges. We utilized next-generation sequencing technology to sequence and assemble the plastid genomes of seven Tulipa species collected in Kazakhstan and conducted a comparative analysis. The total number of annotated genes was 136 in all seven studied Tulipa species, 114 of which were unique, including 80 protein-coding, 30 tRNA, and 4 rRNA genes. Nine regions (petD, ndhH, ycf2-ycf3, ndhA, rpl16, clpP, ndhD-ndhF, rpoC2, and ycf1) demonstrated significant nucleotide variability, suggesting their potential as molecular markers. A total of 1388 SSRs were identified in the seven Tulipa plastomes, with mononucleotide repeats being the most abundant (60.09%), followed by dinucleotide (34.44%), tetranucleotide (3.90%), trinucleotide (1.08%), pentanucleotide (0.22%), and hexanucleotide (0.29%). The Ka/Ks values of the protein-coding genes ranged from 0 to 3.9286, with the majority showing values <1. Phylogenetic analysis based on a complete plastid genome and protein-coding gene sequences divided the species into three major clades corresponding to their subgenera. The results obtained in this study may contribute to understanding the phylogenetic relationships and molecular taxonomy of Tulipa species.


Subject(s)
Genome, Plastid , Phylogeny , Tulipa , Tulipa/genetics , Tulipa/classification , High-Throughput Nucleotide Sequencing , Microsatellite Repeats/genetics , Molecular Sequence Annotation , RNA, Transfer/genetics
12.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542843

ABSTRACT

The genus Cinnamomum encompasses diverse species with various applications, particularly in traditional medicine and spice production. This study focuses on Cinnamomum burmanni, specifically on a high-D-borneol-content chemotype, known as the Meipian Tree, in Guangdong Province, South China. This research explores essential oil diversity, chemotypes, and chloroplast genomic diversity among 28 C. burmanni samples collected from botanical gardens. Essential oils were analyzed, and chemotypes classified using GC-MS and statistical methods. Plastome assembly and phylogenetic analysis were conducted to reveal genetic relationships. Results showed distinct chemotypes, including eucalyptol and borneol types, with notable variations in essential oil composition. The chloroplast genome exhibited conserved features, with phylogenetic analysis revealing three major clades. Borneol-rich individuals in clade II suggested a potential maternal inheritance pattern. However, phylogenetic signals revealed that the composition of essential oils is weakly correlated with plastome phylogeny. The study underscores the importance of botanical gardens in preserving genetic and chemical diversity, offering insights for sustainable resource utilization and selective breeding of high-yield mother plants of C. burmanni.


Subject(s)
Camphanes , Cinnamomum , Lauraceae , Oils, Volatile , Humans , Oils, Volatile/chemistry , Cinnamomum/genetics , Phylogeny , Maternal Inheritance
13.
Plant J ; 109(3): 727-736, 2022 02.
Article in English | MEDLINE | ID: mdl-34784084

ABSTRACT

Recent advances in the sequencing and assembly of plant genomes have allowed the generation of genomes with increasing contiguity and sequence accuracy. Chromosome level genome assemblies using sequence contigs generated from long read sequencing have involved the use of proximity analysis (Hi-C) or traditional genetic maps to guide the placement of sequence contigs within chromosomes. The development of highly accurate long reads by repeated sequencing of circularized DNA (HiFi; PacBio) has greatly increased the size of contigs. We now report the use of HiFiasm to assemble the genome of Macadamia jansenii, a genome that has been used as a model to test sequencing and assembly. This achieved almost complete chromosome level assembly from the sequence data alone without the need for higher level chromosome map information. Eight of the 14 chromosomes were represented by a single large contig (six with telomere repeats at both ends) and the other six assembled from two to four main contigs. The small number of chromosome breaks appears to be the result of highly repetitive regions including ribosomal genes that cannot be assembled by these approaches. De novo assembly of near complete chromosome level plant genomes now appears possible using these sequencing and assembly tools. Further targeted strategies might allow these remaining gaps to be closed.


Subject(s)
Chromosomes, Plant , Genome, Plant , Macadamia/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
14.
Mol Biol Evol ; 39(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36403966

ABSTRACT

Plastids, similar to mitochondria, are organelles of endosymbiotic origin, which retained their vestigial genomes (ptDNA). Their unique architecture, commonly referred to as the quadripartite (four-part) structure, is considered to be strictly conserved; however, the bulk of our knowledge on their variability and evolutionary transformations comes from studies of the primary plastids of green algae and land plants. To broaden our perspective, we obtained seven new ptDNA sequences from freshwater species of photosynthetic euglenids-a group that obtained secondary plastids, known to have dynamically evolving genome structure, via endosymbiosis with a green alga. Our analyses have demonstrated that the evolutionary history of euglenid plastid genome structure is exceptionally convoluted, with a patchy distribution of inverted ribosomal operon (rDNA) repeats, as well as several independent acquisitions of tandemly repeated rDNA copies. Moreover, we have shown that inverted repeats in euglenid ptDNA do not share their genome-stabilizing property documented in chlorophytes. We hypothesize that the degeneration of the quadripartite structure of euglenid plastid genomes is connected to the group II intron expansion. These findings challenge the current global paradigms of plastid genome architecture evolution and underscore the often-underestimated divergence between the functionality of shared traits in primary and complex plastid organelles.


Subject(s)
Genome, Plastid
15.
Funct Integr Genomics ; 23(2): 126, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37067625

ABSTRACT

Reference-guided de novo assembly of the Dalbergia congesta chloroplast genome was carried out using whole-genome sequencing data. The newly generated chloroplast genome size had a total length of 156,048 bp and a GC content of 36.1%. The plastome showed the classical quadripartite structure with two inverted repeats regions (IRs; each 25,715 bp) separating the large single-copy region (LSC; 85,456 bp) from the small single-copy region (SSC; 19,162 bp). The plastid genome contained 111 unique genes, including 77 protein-coding genes (CDS), 30 tRNAs, and 4 rRNAs. The phylogenomic analyses based on whole chloroplast genome sequences recovered Dalbergia as a distinct clade of the Papilionoideae, with Dalbergia congesta having a sister relationship to a clade comprising D. fusca and D. cultrata. The newly available plastome sequence will facilitate future genetic and conservational research aiming to protect this economically important but highly threatened legume species.


Subject(s)
Dalbergia , Genome, Chloroplast , Chloroplasts/genetics , Dalbergia/genetics , India
16.
BMC Plant Biol ; 23(1): 359, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452336

ABSTRACT

BACKGROUND: Lysimachia L., the second largest genus within the subfamily Myrsinoideae of Primulaceae, comprises approximately 250 species worldwide. China is the species diversity center of Lysimachia, containing approximately 150 species. Despite advances in the backbone phylogeny of Lysimachia, species-level relationships remain poorly understood due to limited genomic information. This study analyzed 50 complete plastomes for 46 Lysimachia species. We aimed to identify the plastome structure features and hypervariable loci of Lysimachia. Additionally, the phylogenetic relationships and phylogenetic conflict signals in Lysimachia were examined. RESULTS: These fifty plastomes within Lysimachia had the typical quadripartite structure, with lengths varying from 152,691 to 155,784 bp. Plastome size was positively correlated with IR and intron length. Thirteen highly variable regions in Lysimachia plastomes were identified. Additionally, ndhB, petB and ycf2 were found to be under positive selection. Plastid ML trees and species tree strongly supported that L. maritima as sister to subg. Palladia + subg. Lysimachia (Christinae clade), while the nrDNA ML tree clearly placed L. maritima and subg. Palladia as a sister group. CONCLUSIONS: The structures of these plastomes of Lysimachia were generally conserved, but potential plastid markers and signatures of positive selection were detected. These genomic data provided new insights into the interspecific relationships of Lysimachia, including the cytonuclear discordance of the position of L. maritima, which may be the result of ghost introgression in the past. Our findings have established a basis for further exploration of the taxonomy, phylogeny and evolutionary history within Lysimachia.


Subject(s)
Genome, Plastid , Primulaceae , Primulaceae/genetics , Phylogeny , Lysimachia , Plastids/genetics , Evolution, Molecular
17.
BMC Plant Biol ; 23(1): 586, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37993773

ABSTRACT

BACKGROUND: Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS: Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS: Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.


Subject(s)
Dendrobium , Genome, Mitochondrial , Orchidaceae , Phylogeny , Orchidaceae/genetics , Dendrobium/genetics , Genome, Mitochondrial/genetics , Genomics/methods , Base Sequence
18.
BMC Plant Biol ; 23(1): 303, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37280518

ABSTRACT

BACKGROUND: Ceratostigma, a genus in the Plumbaginaceae, is an ecologically dominant group of shrubs, subshrub and herb mainly distributed in Qinghai-Tibet Plateau and North China. Ceratostigma has been the focal group in several studies, owing to their importance in economic and ecological value and unique breeding styles. Despite this, the genome information is limited and interspecific relationships within the genus Cerotastigma remains unexplored. Here we sequenced, assembled and characterized the 14 plastomes of five species, and conducted phylogenetic analyses of Cerotastigma using plastomes and nuclear ribosomal DNA (nrDNA) data. RESULTS: Fourteen Cerotastigma plastomes possess typical quadripartite structures with lengths from 164,076 to 168,355 bp that consist of a large single copy, a small single copy and a pair of inverted repeats, and contain 127-128 genes, including 82-83 protein coding genes, 37 transfer RNAs and eight ribosomal RNAs. All plastomes are highly conservative and similar in gene order, simple sequence repeats (SSRs), long repeat repeats and codon usage patterns, but some structural variations in the border of single copy and inverted repeats. Mutation hotspots in coding (Pi values > 0.01: matK, ycf3, rps11, rps3, rpl22 and ndhF) and non-coding regions (Pi values > 0.02: trnH-psbA, rps16-trnQ, ndhF-rpl32 and rpl32-trnL) were identified among plastid genomes that could be served as potential molecular markers for species delimitation and genetic variation studies in Cerotastigma. Gene selective pressure analysis showed that most protein-coding genes have been under purifying selection except two genes. Phylogenetic analyses based on whole plastomes and nrDNA strongly support that the five species formed a monophyletic clade. Moreover, interspecific delimitation was well resolved except C. minus, individuals of which clustered into two main clades corresponding to their geographic distributions. The topology inferred from the nrDNA dataset was not congruent with the tree derived from the analyses of the plastid dataset. CONCLUSION: These findings represent the first important step in elucidating plastome evolution in this widespread distribution genus Cerotastigma in the Qinghai-Tibet Plateau. The detailed information could provide a valuable resource for understanding the molecular dynamics and phylogenetic relationship in the family Plumbaginaceae. Lineage genetic divergence within C. minus was perhaps promoted by geographic barriers in the Himalaya and Hengduan Mountains region, but introgression or hybridization could not be completely excluded.


Subject(s)
Genome, Plastid , Plumbaginaceae , Phylogeny , Plumbaginaceae/genetics , Evolution, Molecular , Plant Breeding , China , Ecosystem
19.
BMC Plant Biol ; 23(1): 645, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38097946

ABSTRACT

BACKGROUND: The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS: Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS: Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.


Subject(s)
Caprifoliaceae , Genome, Plastid , Humans , Adult , Phylogeny , Caprifoliaceae/genetics , Genome, Plastid/genetics , Phenotype , DNA, Ribosomal
20.
Mol Ecol ; 32(7): 1726-1738, 2023 04.
Article in English | MEDLINE | ID: mdl-36635976

ABSTRACT

Long-distance dispersal (LDD) of seeds plays an essential role in the migration of plants to a new habitat and maintaining gene flow among geographically isolated populations. Pantropical plants with sea-drifted seeds, which have one of the largest distributions in all flowering plants, have achieved their global distribution by LDD. However, the spatiotemporal processes to achieve the wide distribution and the role of LDD in it have not yet been elucidated. In this study, we conducted phylogenomic analyses on the plastome, genome-wide nuclear SNP, and low-copy gene data of Hibiscus tiliaceus and its relatives. The dated phylogeny suggested that global expansion started approximately 4 million years ago (Ma), and species diversification occurred 1 Ma. Plastome phylogeny confirmed the nonmonophyly of the haplotypes in the two widely distributed coastal species, H. tiliaceus and H. pernambucensis. In contrast, genome-wide nuclear SNP phylogenies demonstrated clear genetic segregation among species and/or geographical regions. Ancestral polymorphisms in chloroplast genomes shared among widely distributed species have remained below the range of rapid expansion and speciation of marginal populations. This study demonstrated that the LDD of sea-drifted seeds contributed to the rapid expansion and pantropical distribution of sea hibiscus in the last few million years, and adaptation to local environment or isolation by regional effect after LDD promoted speciation, suppressing gene flow.


Subject(s)
Hibiscus , Seed Dispersal , Hibiscus/genetics , Seed Dispersal/genetics , Phylogeny , Polymorphism, Genetic , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL