Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 908
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2318903121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466876

ABSTRACT

Two recently published analyses make cases for severe bottlenecking of human populations occurring in the late Early Pleistocene, one case at about 0.9 Mya based on a genomic analysis of modern human populations and the low number of hominin sites of this age in Africa and the other at about 1.1 Mya based on an age inventory of sites of hominin presence in Eurasia. Both models point to climate change as the bottleneck trigger, albeit manifested at very different times, and have implications for human migrations as a mechanism to elude extinction at bottlenecking. Here, we assess the climatic and chronologic components of these models and suggest that the several hundred-thousand-year difference is largely an artifact of biases in the chronostratigraphic record of Eurasian hominin sites. We suggest that the best available data are consistent with the Galerian hypothesis expanded from Europe to Eurasia as a major migration pulse of fauna including hominins in the late Early Pleistocene as a consequence of the opening of land routes from Africa facilitated by a large sea level drop associated with the first major ice age of the Pleistocene and concurrent with widespread aridity across Africa that occurred during marine isotope stage 22 at ~0.9 Mya. This timing agrees with the independently dated bottleneck from genomic analysis of modern human populations and allows speculations about the relative roles of climate forcing on the survival of hominins.


Subject(s)
Hominidae , Animals , Humans , Hominidae/genetics , Fossils , Africa , Europe , Human Migration
2.
Proc Natl Acad Sci U S A ; 120(21): e2221082120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186818

ABSTRACT

Determining the timing and drivers of Pleistocene hydrological change in the interior of South Africa is critical for testing hypotheses regarding the presence, dynamics, and resilience of human populations. Combining geological data and physically based distributed hydrological modeling, we demonstrate the presence of large paleolakes in South Africa's central interior during the last glacial period, and infer a regional-scale invigoration of hydrological networks, particularly during marine isotope stages 3 and 2, most notably 55 to 39 ka and 34 to 31 ka. The resulting hydrological reconstructions further permit investigation of regional floral and fauna responses using a modern analog approach. These suggest that the climate change required to sustain these water bodies would have replaced xeric shrubland with more productive, eutrophic grassland or higher grass-cover vegetation, capable of supporting a substantial increase in ungulate diversity and biomass. The existence of such resource-rich landscapes for protracted phases within the last glacial period likely exerted a recurrent draw on human societies, evidenced by extensive pan-side artifact assemblages. Thus, rather than representing a perennially uninhabited hinterland, the central interior's underrepresentation in late Pleistocene archeological narratives likely reflects taphonomic biases stemming from a dearth of rockshelters and regional geomorphic controls. These findings suggest that South Africa's central interior experienced greater climatic, ecological, and cultural dynamism than previously appreciated and potential to host human populations whose archaeological signatures deserve systematic investigation.


Subject(s)
Archaeology , Mammals , Animals , Humans , South Africa , Biomass , Poaceae , Fossils
3.
Proc Natl Acad Sci U S A ; 119(45): e2210627119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36279427

ABSTRACT

Despite recent advances in chronometric techniques (e.g., Uranium-Lead [U-Pb], cosmogenic nuclides, electron spin resonance spectroscopy [ESR]), considerable uncertainty remains regarding the age of many Plio-Pleistocene hominin sites, including several in South Africa. Consequently, biochronology remains important in assessments of Plio-Pleistocene geochronology and provides direct age estimates of the fossils themselves. Historically, cercopithecid monkeys have been among the most useful taxa for biochronology of early hominins because they are widely present and abundant in the African Plio-Pleistocene record. The last major studies using cercopithecids were published over 30 y ago. Since then, new hominin sites have been discovered, radiometric age estimates have been refined, and many changes have occurred in cercopithecid taxonomy and systematics. Thus, a biochronological reassessment using cercopithecids is long overdue. Here, we provide just such a revision based on our recent study of every major cercopithecid collection from African Plio-Pleistocene sites. In addition to correlations based on shared faunal elements, we present an analysis based on the dentition of the abundant cercopithecid Theropithecus oswaldi, which increases in size in a manner that is strongly correlated with geological age (r2 ∼0.83), thereby providing a highly accurate age-estimation tool not previously utilized. In combination with paleomagnetic and U-Pb data, our results provide revised age estimates and suggest that there are no hominin sites in South Africa significantly older than ∼2.8 Ma. Where conflicting age estimates exist, we suggest that additional data are needed and recall that faunal estimates have ultimately proved reliable in the past (e.g., the age of the KBS Tuff).


Subject(s)
Hominidae , Theropithecus , Uranium , Animals , South Africa , Lead , Fossils , Primates
4.
Proc Natl Acad Sci U S A ; 119(16): e2107393119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412903

ABSTRACT

Understanding the climatic drivers of environmental variability (EV) during the Plio-Pleistocene and EV's influence on mammalian macroevolution are two outstanding foci of research in African paleoclimatology and evolutionary biology. The potential effects of EV are especially relevant for testing the variability selection hypothesis, which predicts a positive relationship between EV and speciation and extinction rates in fossil mammals. Addressing these questions is stymied, however, by 1) a lack of multiple comparable EV records of sufficient temporal resolution and duration, and 2) the incompleteness of the mammalian fossil record. Here, we first compile a composite history of Pan-African EV spanning the Plio-Pleistocene, which allows us to explore which climatic variables influenced EV. We find that EV exhibits 1) a long-term trend of increasing variability since ∼3.7 Ma, coincident with rising variability in global ice volume and sea surface temperatures around Africa, and 2) a 400-ky frequency correlated with seasonal insolation variability. We then estimate speciation and extinction rates for fossil mammals from eastern Africa using a method that accounts for sampling variation. We find no statistically significant relationship between EV and estimated speciation or extinction rates across multiple spatial scales. These findings are inconsistent with the variability selection hypothesis as applied to macroevolutionary processes.


Subject(s)
Biological Evolution , Climate , Extinction, Biological , Genetic Speciation , Hominidae , Africa , Animals , Fossils , Hominidae/genetics
5.
Mol Ecol ; 33(7): e17301, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385302

ABSTRACT

Phylogeographic studies of continental clades, especially when combined with palaeoclimate modelling, provide powerful insight into how environment drives speciation across climatic contexts. Australia, a continent characterized by disparate modern biomes and dynamic climate change, provides diverse opportunity to reconstruct the impact of past and present environments on diversification. Here, we use genomic-scale data (1310 exons and whole mitogenomes from 111 samples) to investigate Pleistocene diversification, cryptic diversity, and secondary contact in the Australian delicate mice (Hydromyini: Pseudomys), a recent radiation spanning almost all Australian environments. Across northern Australia, we find no evidence for introgression between cryptic lineages within Pseudomys delicatulus sensu lato, with palaeoclimate models supporting contraction and expansion of suitable habitat since the last glacial maximum. Despite multiple contact zones, we also find little evidence of introgression at a continental scale, with the exception of a potential hybrid zone in the mesic biome. In the arid zone, combined insights from genetic data and palaeomodels support a recent expansion in the arid specialist P. hermannsburgensis and contraction in the semi-arid P. bolami. In the face of repeated secondary contact, differences in sperm morphology and chromosomal rearrangements are potential mechanisms that maintain species boundaries in these recently diverged species. Additionally, we describe the western delicate mouse as a new species and recommend taxonomic reinstatement of the eastern delicate mouse. Overall, we show that speciation in an evolutionarily young and widespread clade has been driven by environmental change, and potentially maintained by divergence in reproductive morphology and chromosome rearrangements.


Subject(s)
Reproductive Isolation , Semen , Male , Animals , Mice , Australia , Phylogeny , Bayes Theorem , Ecosystem , Phylogeography , Murinae/genetics , DNA, Mitochondrial/genetics , Genetic Speciation
6.
Mol Ecol ; 33(2): e17219, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015012

ABSTRACT

Numerous mechanisms can drive speciation, including isolation by adaptation, distance, and environment. These forces can promote genetic and phenotypic differentiation of local populations, the formation of phylogeographic lineages, and ultimately, completed speciation. However, conceptually similar mechanisms may also result in stabilizing rather than diversifying selection, leading to lineage integration and the long-term persistence of population structure within genetically cohesive species. Processes that drive the formation and maintenance of geographic genetic diversity while facilitating high rates of migration and limiting phenotypic differentiation may thereby result in population genetic structure that is not accompanied by reproductive isolation. We suggest that this framework can be applied more broadly to address the classic dilemma of "structure" versus "species" when evaluating phylogeographic diversity, unifying population genetics, species delimitation, and the underlying study of speciation. We demonstrate one such instance in the Seepage Salamander (Desmognathus aeneus) from the southeastern United States. Recent studies estimated up to 6.3% mitochondrial divergence and four phylogenomic lineages with broad admixture across geographic hybrid zones, which could potentially represent distinct species supported by our species-delimitation analyses. However, while limited dispersal promotes substantial isolation by distance, microhabitat specificity appears to yield stabilizing selection on a single, uniform, ecologically mediated phenotype. As a result, climatic cycles promote recurrent contact between lineages and repeated instances of high migration through time. Subsequent hybridization is apparently not counteracted by adaptive differentiation limiting introgression, leaving a single unified species with deeply divergent phylogeographic lineages that nonetheless do not appear to represent incipient species.


Subject(s)
DNA, Mitochondrial , Urodela , Animals , Urodela/genetics , DNA, Mitochondrial/genetics , Phylogeography , Phylogeny , Phenotype , Demography , Genetic Speciation
7.
Mol Ecol ; : e17487, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108249

ABSTRACT

An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex Agabus bipustulatus species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist A. bipustulatus and another corresponding to the strictly-alpine A. nevadensis, a narrow-range endemic taxon from the Sierra Nevada mountain range in southeastern Iberia. The best-supported model of lineage divergence, along with the existence of pervasive genetic introgression and admixture in secondary contact zones, is consistent with a scenario of population isolation and connectivity linked to Quaternary climatic oscillations. Our results suggest that A. nevadensis is an alpine ecotype of A. bipustulatus, whose genotypic, morphological and physiological differentiation likely resulted from an interplay between population isolation and local altitudinal adaptation. Remarkably, within the Iberian Peninsula, such ecotypic differentiation is unique to Sierra Nevada populations and has not been replicated in other alpine populations of A. bipustulatus. Collectively, our study supports fast ecotypic differentiation and incipient speciation processes within the study complex and points to Pleistocene glaciations and local adaptation along elevational gradients as key drivers of biodiversity generation in alpine environments.

8.
Mol Ecol ; 33(3): e17232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38205900

ABSTRACT

The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed.


Subject(s)
Lupinus , Phylogeny , Florida , Sand , Ecosystem
9.
Mol Phylogenet Evol ; 197: 108082, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705251

ABSTRACT

In addition to topography and climate, biogeographic dispersal has been considered to influence plant diversity in the Himalaya-Hengduan Mountains (HHM), yet, the mode and tempo of sky island dispersal and its influence on species richness has been little explored. Through phylogenetic analysis of Gaultheria ser. Trichophyllae, a sky island alpine clade within the HHM, we test the hypothesis that dispersal has affected current local species richness. We inferred the dynamics of biogeographic dispersal with correlation tests on direction, distance, occurrence time, and regional species richness. We found that G. ser. Trichophyllae originated at the end of the Miocene and mostly dispersed toward higher longitudes (eastward). In particular, shorter intra-regional eastward dispersals and longer inter-regional westward dispersals were most frequently observed. We detected a prevalence of eastward intra-region dispersals in both glacial periods and interglacials. These dispersals may have been facilitated by the reorganization of paleo-drainages and monsoon intensification through time. We suggest that the timing of dispersal corresponding to glacial periods and the prevalence of intra-region dispersal, rather than dispersal frequency, most influenced the pattern of species richness of G. ser. Trichophyllae. This study facilitates a more comprehensive understanding of biodiversity in the sky islands within the HHM.


Subject(s)
Biodiversity , Phylogeny , China , Phylogeography , Islands , Plant Dispersal
10.
Mol Phylogenet Evol ; 195: 108055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485106

ABSTRACT

Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.


Subject(s)
Glycine max , Heteroptera , Animals , Glycine max/genetics , Phylogeny , Genetic Variation , Evolution, Molecular , DNA, Mitochondrial/genetics , Phylogeography , Asia, Eastern , Heteroptera/genetics
11.
Mol Phylogenet Evol ; 194: 108042, 2024 May.
Article in English | MEDLINE | ID: mdl-38401812

ABSTRACT

Climate changes at larger scales have influenced dispersal and range shifts of many taxa in East Asia. The fascicularis species group of macaques is composed of four species and is widely distributed in Southeast and East Asia. However, its phylogeography and demographic histories are currently poorly understood. Herein, we assembled autosomal, mitogenome, and Y-chromosome data for 106 individuals, and combined them with 174 mtDNA dloop haplotypes of this species group, with particular focus on the demographic histories and dispersal routes of Macaca fuscata, M. cyclopis, and M. mulatta. The results showed: (1) three monophyletic clades for M. fuscata, M. cyclopis, and M. mulatta based on the multiple genomics analyses; (2) the disparate demographic trajectories of the three species after their split ∼1.0 Ma revealed that M. cyclopis and M. fuscata were derived from an ancestral M. mulatta population; (3) the speciation time of M. cyclopis was later than that of M. fuscata, and their divergence time occurred at the beginning of "Ryukyu Coral Sea Stage" (1.0-0.2 Ma) when the East China Sea land bridge was completely submerged by the sea level rose; and (4) the three parallel rivers (Nujiang, Lancangjiang, and Jinshajiang) of Southwestern China divided M. mulatta into Indian and Chinese genetic populations ∼200 kya. These results shed light on understanding not only the evolutionary history of the fascicularis species group but also the formation mechanism of faunal diversity in East Asia during the Pleistocene.


Subject(s)
Macaca fuscata , Macaca , Animals , Phylogeography , Phylogeny , Macaca fuscata/genetics , Macaca/genetics , Asia, Eastern , DNA, Mitochondrial/genetics , Genomics , Demography
12.
Glob Chang Biol ; 30(5): e17339, 2024 May.
Article in English | MEDLINE | ID: mdl-38804193

ABSTRACT

Climate plays a crucial role in shaping species distribution and evolution over time. Dr Vrba's Resource-Use hypothesis posited that zones at the extremes of temperature and precipitation conditions should host a greater number of climate specialist species than other zones because of higher historical fragmentation. Here, we tested this hypothesis by examining climate-induced fragmentation over the past 5 million years. Our findings revealed that, as stated by Vrba, the number of climate specialist species increases with historical regional climate fragmentation, whereas climate generalist species richness decreases. This relationship is approximately 40% stronger than the correlation between current climate and species richness for climate specialist species and 77% stronger for generalist species. These evidences suggest that the effect of climate historical fragmentation is more significant than that of current climate conditions in explaining mammal biogeography. These results provide empirical support for the role of historical climate fragmentation and physiography in shaping the distribution and evolution of life on Earth.


Subject(s)
Biodiversity , Climate Change , Mammals , Animals , Mammals/physiology , Climate , Animal Distribution , Phylogeography , Biological Evolution
13.
J Hum Evol ; 189: 103507, 2024 04.
Article in English | MEDLINE | ID: mdl-38417249

ABSTRACT

The rarity of Pongo fossils with precise absolute dating from the Middle Pleistocene hampers our understanding of the taxonomy and spatiotemporal distribution of Quaternary orangutans in southern China. Here, we report a newly discovered sample of 113 isolated teeth of fossil Pongo from Zhongshan Cave in the Bubing Basin, Guangxi, southern China. We describe the Pongo specimens from Zhongshan Cave and compare them metrically to other samples of fossil Pongo species (i.e., Pongo weidenreichi, Pongo devosi, Pongo duboisi, Pongo palaeosumatrensis, Pongo javensis, and Pongo sp.) and to extant orangutans (i.e., Pongo pygmaeus and Pongo abelii). The Zhongshan Pongo assemblage is dated using U-series and coupled electron spin resonance/U-series methods. Our results reasonably constrain the Zhongshan Pongo assemblage to 184 ± 16 ka, which is consistent with the biostratigraphic evidence. The Zhongshan Pongo teeth are only 6.5% larger on average than those of extant Pongo. The Zhongshan teeth are smaller overall than those of Pongo from all other cave sites in southern China, and they currently represent the smallest fossil orangutans in southern China. Based on their dental size, and the presence of a well-developed lingual pillar and lingual cingulum on the upper and lower incisors, an intermediate frequency of lingual cingulum remnants on the upper molars, and a higher frequency of moderate to heavy wrinkling on the upper and lower molars, we provisionally assign the Zhongshan fossils to P. devosi. Our results confirm earlier claims that P. weidenreichi is replaced by a smaller species in southern China, P. devosi, by the late Middle Pleistocene. The occurrence of P. devosi in Zhongshan Cave further extends its spatial and temporal distribution. The Pongo specimens from Zhongshan provide important new evidence to demonstrate that the dental morphological features of Pongo in southern China changed substantially during the late Middle Pleistocene.


Subject(s)
Hominidae , Pongo abelii , Tooth , Animals , Pongo/anatomy & histology , Fossils , China , Tooth/anatomy & histology , Pongo pygmaeus , Hominidae/anatomy & histology
14.
J Hum Evol ; 191: 103517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781712

ABSTRACT

The Kocabas specimen comes from a travertine quarry near the homonymous village in the Denizli basin (Turkey). The specimen comprises three main fragments: portions of the right and left parietal and left and right parts of the frontal bone. The fossil was assumed to belong to the Homo erectus s.l. hypodigm by some authors, whereas others see similarities with Middle Pleistocene fossils (Broken Hill 1/Kabwe, Bodo, or Ceprano). Here, we present the first attempt to make a complete reconstruction of the missing medial portion of the frontal bone and a comprehensive geometric morphometric analysis of this bone. We restored the calotte by aligning and mirroring the three preserved fragments. Afterward, we restored the missing portion by applying the thin-plate spline interpolation algorithm of target fossils onto the reconstructed Kocabas specimen. For the geometric morphometric analyses, we collected 80 landmarks on the frontal bone (11 osteometric points, 14 bilateral curve semilandmarks, and 41 surface semilandmarks). The comparative sample includes 21 fossils from different chronological periods and geographical areas and 30 adult modern humans from different populations. Shape analyses highlighted the presence in Kocabas of features usually related to Middle Pleistocene Homo, such as a developed supraorbital torus associated with a relatively short frontal squama and reduced post-toral sulcus. Cluster analysis and linear discriminant analysis classification procedure suggest Kocabas being part of the same taxonomic unit of Eurasian and African Middle Pleistocene Homo. In light of our results, we consider that attributing the Kocabas hominin to H. erectus s.l. may be unwarranted. Results of our analyses are compatible with different evolutionary scenarios, but a more precise chronological framework is needed for a thorough discussion of the evolutionary significance of this specimen. Future work should clarify its geological age, given uncertainties regarding its stratigraphic provenance.


Subject(s)
Biological Evolution , Fossils , Hominidae , Fossils/anatomy & histology , Hominidae/anatomy & histology , Hominidae/classification , Animals , Turkey , Frontal Bone/anatomy & histology
15.
J Hum Evol ; 193: 103566, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39029412

ABSTRACT

Zooarcheological and geochemical evidence suggests Neanderthals were top predators, but their adherence to a strictly carnivorous diet has been questioned. Recent studies have demonstrated the potential of calcium-stable isotopes to evaluate trophic and ecological relationships. Here, we measure the δ44/42Ca values in bone samples from Mousterian contexts at Grotte du Bison (Marine Isotope Stage 3, Yonne, France) and Regourdou (Marine Isotope Stage 5, Dordogne, France) in two new Neanderthal individuals, associated fauna, and living local plants. We use a Bayesian mixing model to estimate the dietary composition of these Neanderthal individuals, plus a third one already analyzed. The results reveal three distinct diets: a diet including accidental or voluntary consumption of bone-based food, an intermediate diet, and a diet without consumption of bone-based food. This finding is the first demonstration of diverse subsistence strategies among Neanderthals and as such, reconciles archaeological and geochemical dietary evidence.


Subject(s)
Bone and Bones , Calcium Isotopes , Diet , Neanderthals , Animals , Bone and Bones/chemistry , Calcium Isotopes/analysis , France , Fossils
16.
J Hum Evol ; 190: 103498, 2024 05.
Article in English | MEDLINE | ID: mdl-38581918

ABSTRACT

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Subject(s)
Hominidae , Animals , Kenya , Ecosystem , Biological Evolution , Carbonates , Archaeology , Fossils
17.
J Hered ; 115(4): 424-431, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38150503

ABSTRACT

The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, United States, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species' current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.


Subject(s)
Fossils , Genome, Mitochondrial , Panthera , Phylogeny , Animals , Panthera/genetics , Panthera/classification , Sequence Analysis, DNA , DNA, Mitochondrial/genetics , North America , Georgia , Evolution, Molecular , Genetic Variation
18.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607943

ABSTRACT

Climatic oscillations during the Pleistocene played a major role in shaping the spatial distribution and demographic dynamics of Earth's biota, including our own species. The Last Interglacial (LIG) or Eemian Period (ca. 130 to 115 thousand years B.P.) was particularly influential because this period of peak warmth led to the retreat of all ice sheets with concomitant changes in global sea level. The impact of these strong environmental changes on the spatial distribution of marine and terrestrial ecosystems was severe as revealed by fossil data and paleogeographic modeling. Here, we report the occurrence of an extant, inland mangrove ecosystem and demonstrate that it is a relict of the LIG. This ecosystem is currently confined to the banks of the freshwater San Pedro Mártir River in the interior of the Mexico-Guatemala El Petén rainforests, 170 km away from the nearest ocean coast but showing the plant composition and physiognomy typical of a coastal lagoon ecosystem. Integrating genomic, geologic, and floristic data with sea level modeling, we present evidence that this inland ecosystem reached its current location during the LIG and has persisted there in isolation ever since the oceans receded during the Wisconsin glaciation. Our study provides a snapshot of the Pleistocene peak warmth and reveals biotic evidence that sea levels substantially influenced landscapes and species ranges in the tropics during this period.


Subject(s)
Ice Cover , Rhizophoraceae/growth & development , Sea Level Rise , Wetlands , Climate , Climate Change , Environment , Genetic Variation/genetics , Guatemala , Mexico , Rhizophoraceae/genetics
19.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34400496

ABSTRACT

The sediment record from Lake Ohrid (Southwestern Balkans) represents the longest continuous lake archive in Europe, extending back to 1.36 Ma. We reconstruct the vegetation history based on pollen analysis of the DEEP core to reveal changes in vegetation cover and forest diversity during glacial-interglacial (G-IG) cycles and early basin development. The earliest lake phase saw a significantly different composition rich in relict tree taxa and few herbs. Subsequent establishment of a permanent steppic herb association around 1.2 Ma implies a threshold response to changes in moisture availability and temperature and gradual adjustment of the basin morphology. A change in the character of G-IG cycles during the Early-Middle Pleistocene Transition is reflected in the record by reorganization of the vegetation from obliquity- to eccentricity-paced cycles. Based on a quantitative analysis of tree taxa richness, the first large-scale decline in tree diversity occurred around 0.94 Ma. Subsequent variations in tree richness were largely driven by the amplitude and duration of G-IG cycles. Significant tree richness declines occurred in periods with abundant dry herb associations, pointing to aridity affecting tree population survival. Assessment of long-term legacy effects between global climate and regional vegetation change reveals a significant influence of cool interglacial conditions on subsequent glacial vegetation composition and diversity. This effect is contrary to observations at high latitudes, where glacial intensity is known to control subsequent interglacial vegetation, and the evidence demonstrates that the Lake Ohrid catchment functioned as a refugium for both thermophilous and temperate tree species.


Subject(s)
Forests , Geologic Sediments , Ice Cover , Lakes , Pollen , Refugium , Biodiversity , Climate Change , Mediterranean Region , Population Dynamics , Temperature , Time Factors , Trees/classification , Trees/physiology
20.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33723012

ABSTRACT

Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic 26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic 26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance. 26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.


Subject(s)
Geologic Sediments/analysis , Ice Cover/chemistry , Plant Dispersal , Aluminum/analysis , Beryllium/analysis , Fossils , Freezing , Geologic Sediments/chemistry , Greenland , Radioisotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL