Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 755
Filter
Add more filters

Publication year range
1.
Cell ; 185(18): 3390-3407.e18, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055200

ABSTRACT

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.


Subject(s)
Axons/physiology , Chromatin/chemistry , Cilia , Synapses , Cell Nucleus/metabolism , Chromatin/metabolism , Cilia/metabolism , Hippocampus/cytology , Hippocampus/physiology , Serotonin/metabolism , Signal Transduction , Synapses/physiology
2.
Cell ; 184(11): 2911-2926.e18, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33932338

ABSTRACT

Hedgehog pathway components and select G protein-coupled receptors (GPCRs) localize to the primary cilium, an organelle specialized for signal transduction. We investigated whether cells distinguish between ciliary and extraciliary GPCR signaling. To test whether ciliary and extraciliary cyclic AMP (cAMP) convey different information, we engineered optogenetic and chemogenetic tools to control the subcellular site of cAMP generation. Generating equal amounts of ciliary and cytoplasmic cAMP in zebrafish and mammalian cells revealed that ciliary cAMP, but not cytoplasmic cAMP, inhibited Hedgehog signaling. Modeling suggested that the distinct geometries of the cilium and cell body differentially activate local effectors. The search for effectors identified a ciliary pool of protein kinase A (PKA). Blocking the function of ciliary PKA, but not extraciliary PKA, activated Hedgehog signal transduction and reversed the effects of ciliary cAMP. Therefore, cells distinguish ciliary and extraciliary cAMP using functionally and spatially distinct pools of PKA, and different subcellular pools of cAMP convey different information.


Subject(s)
Cilia/metabolism , Cyclic AMP/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoplasm/metabolism , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Neurons/metabolism , Optogenetics/methods , Signal Transduction/physiology , Zebrafish/metabolism
3.
Cell ; 179(6): 1289-1305.e21, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31761534

ABSTRACT

Adult mesenchymal stem cells, including preadipocytes, possess a cellular sensory organelle called the primary cilium. Ciliated preadipocytes abundantly populate perivascular compartments in fat and are activated by a high-fat diet. Here, we sought to understand whether preadipocytes use their cilia to sense and respond to external cues to remodel white adipose tissue. Abolishing preadipocyte cilia in mice severely impairs white adipose tissue expansion. We discover that TULP3-dependent ciliary localization of the omega-3 fatty acid receptor FFAR4/GPR120 promotes adipogenesis. FFAR4 agonists and ω-3 fatty acids, but not saturated fatty acids, trigger mitosis and adipogenesis by rapidly activating cAMP production inside cilia. Ciliary cAMP activates EPAC signaling, CTCF-dependent chromatin remodeling, and transcriptional activation of PPARγ and CEBPα to initiate adipogenesis. We propose that dietary ω-3 fatty acids selectively drive expansion of adipocyte numbers to produce new fat cells and store saturated fatty acids, enabling homeostasis of healthy fat tissue.


Subject(s)
Adipogenesis , Cilia/metabolism , Fatty Acids, Omega-3/pharmacology , Receptors, G-Protein-Coupled/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue, White/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Cilia/drug effects , Cyclic AMP/metabolism , Docosahexaenoic Acids/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism
4.
Cell ; 168(1-2): 264-279.e15, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28086093

ABSTRACT

The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, the primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by the cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate in distal cilia. This change triggers otherwise-forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. While cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer.


Subject(s)
Cell Cycle , Cilia/metabolism , Actins/metabolism , Animals , Kidney/cytology , Kidney/metabolism , Mice , NIH 3T3 Cells , Phosphatidylinositol 4,5-Diphosphate , Phosphoric Monoester Hydrolases/metabolism , Zinc Finger Protein GLI1/metabolism
5.
Mol Cell ; 84(13): 2525-2541.e12, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38906142

ABSTRACT

The Integrator complex attenuates gene expression via the premature termination of RNA polymerase II (RNAP2) at promoter-proximal pausing sites. It is required for stimulus response, cell differentiation, and neurodevelopment, but how gene-specific and adaptive regulation by Integrator is achieved remains unclear. Here, we identify two sites on human Integrator subunits 13/14 that serve as binding hubs for sequence-specific transcription factors (TFs) and other transcription effector complexes. When Integrator is attached to paused RNAP2, these hubs are positioned upstream of the transcription bubble, consistent with simultaneous TF-promoter tethering. The TFs co-localize with Integrator genome-wide, increase Integrator abundance on target genes, and co-regulate responsive transcriptional programs. For instance, sensory cilia formation induced by glucose starvation depends on Integrator-TF contacts. Our data suggest TF-mediated promoter recruitment of Integrator as a widespread mechanism for targeted transcription regulation.


Subject(s)
Gene Expression Regulation , Promoter Regions, Genetic , RNA Polymerase II , Transcription Factors , Transcription, Genetic , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Binding Sites , Protein Binding , HEK293 Cells , Cilia/metabolism , Cilia/genetics
6.
EMBO J ; 42(21): e113891, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37743763

ABSTRACT

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Subject(s)
Cilia , Organelles , Cilia/metabolism , Cell Differentiation
7.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940293

ABSTRACT

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Zebrafish , Animals , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/drug effects , Hematopoiesis/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Cilia/metabolism , Cilia/drug effects , Blastomeres/cytology , Blastomeres/metabolism , Blastomeres/drug effects , Cells, Cultured
8.
Immunity ; 49(3): 427-437.e4, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30217409

ABSTRACT

How cytotoxic T lymphocytes (CTLs) sense T cell receptor (TCR) signaling in order to specialize an area of plasma membrane for granule secretion is not understood. Here, we demonstrate that immune synapse formation led to rapid localized changes in the phosphoinositide composition of the plasma membrane, both reducing phosphoinositide-4-phosphate (PI(4)P), PI(4,5)P2, and PI(3,4,5)P3 and increasing diacylglycerol (DAG) and PI(3,4)P2 within the first 2 min of synapse formation. These changes reduced negative charge across the synapse, triggering the release of electrostatically bound PIP5 kinases that are required to replenish PI(4,5)P2. As PI(4,5)P2 decreased, actin was depleted from the membrane, allowing secretion. Forced localization of PIP5Kß across the synapse prevented actin depletion, blocking both centrosome docking and secretion. Thus, PIP5Ks act as molecular sensors of TCR activation, controlling actin recruitment across the synapse, ensuring exquisite co-ordination between TCR signaling and CTL secretion.


Subject(s)
Actins/metabolism , Cell Membrane/metabolism , Cytoplasmic Granules/metabolism , Immunological Synapses/metabolism , Phosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Degranulation , Cell Line , Cytotoxicity, Immunologic , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
9.
Proc Natl Acad Sci U S A ; 121(17): e2318943121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635628

ABSTRACT

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.


Subject(s)
Induced Pluripotent Stem Cells , Nerve Tissue Proteins , Parkinson Disease , Parkinsonian Disorders , Humans , Mice , Animals , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Mutation
10.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968120

ABSTRACT

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Subject(s)
Dyrk Kinases , Hedgehog Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Signal Transduction , Zinc Finger Protein Gli2 , Zinc Finger Protein Gli3 , Animals , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Proliferation , Cilia/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Nuclear Proteins , Repressor Proteins
11.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088390

ABSTRACT

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Subject(s)
Cilia , Dopaminergic Neurons , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Neuroprotection , Parkinson Disease , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Cilia/metabolism , Animals , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Humans , Mice , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Neuroprotection/genetics , Mutation , Corpus Striatum/metabolism , Corpus Striatum/pathology , Male
12.
Annu Rev Physiol ; 85: 425-448, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36763973

ABSTRACT

Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.


Subject(s)
TRPP Cation Channels , Humans , Calcium/metabolism , Signal Transduction , TRPP Cation Channels/chemistry , TRPP Cation Channels/metabolism
13.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38804679

ABSTRACT

The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that have a specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immunolabeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the three-dimensional ultrastructure of the cilium. Here, we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT)88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immunolabeling and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.


Subject(s)
Cilia , Islets of Langerhans , Cilia/ultrastructure , Cilia/metabolism , Animals , Humans , Mice , Islets of Langerhans/ultrastructure , Islets of Langerhans/metabolism , Microscopy, Electron, Scanning/methods
14.
J Cell Sci ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056167

ABSTRACT

The primary cilium is a small organelle protruding from the cell surface and receives signals from the extracellular milieu. While dozens of studies have reported that several genetic factors impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortenings and disassembly of primary cilia in murine intramedullary collecting duct cells. The primary cilia shortening caused by hyperosmotic shock followed delocalization of pericentriolar materials (PCMs). Excessive microtubule and F-actin formation in the cytoplasm coincided with those hyperosmotic shock-induced changes of primary cilia and PCMs. A microtubule-disrupting agent, Nocodazole, prevented the hyperosmotic shock-induced primary cilia disassembly partially, while preventing the delocalization of PCMs almost 100%. An actin polymerization inhibitor, Latrunculin A, also prevented partially the hyperosmotic shock-induced primary cilia shortening and disassembly, while preventing the delocalization of PCMs almost 100%. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and PCMs in a manner dependent on excessive formation of microtubule and F-actin.

15.
Development ; 150(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-36971348

ABSTRACT

Primary cilia are nearly ubiquitous organelles that transduce molecular and mechanical signals. Although the basic structure of the cilium and the cadre of genes that contribute to ciliary formation and function (the ciliome) are believed to be evolutionarily conserved, the presentation of ciliopathies with narrow, tissue-specific phenotypes and distinct molecular readouts suggests that an unappreciated heterogeneity exists within this organelle. Here, we provide a searchable transcriptomic resource for a curated primary ciliome, detailing various subgroups of differentially expressed genes within the ciliome that display tissue and temporal specificity. Genes within the differentially expressed ciliome exhibited a lower level of functional constraint across species, suggesting organism and cell-specific function adaptation. The biological relevance of ciliary heterogeneity was functionally validated by using Cas9 gene-editing to disrupt ciliary genes that displayed dynamic gene expression profiles during osteogenic differentiation of multipotent neural crest cells. Collectively, this novel primary cilia-focused resource will allow researchers to explore longstanding questions related to how tissue and cell-type specific functions and ciliary heterogeneity may contribute to the range of phenotypes associated with ciliopathies.


Subject(s)
Ciliopathies , Osteogenesis , Humans , Cilia/genetics , Cilia/metabolism , Ciliopathies/genetics , Embryonic Development/genetics , Cell Differentiation/genetics
16.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36661357

ABSTRACT

Olfactory sensory neurons (OSNs) form embryonically and mature perinatally, innervating glomeruli and extending dendrites with multiple cilia. This process and its timing are crucial for odor detection and perception and continues throughout life. In the olfactory epithelium (OE), differentiated OSNs proceed from an immature (iOSN) to a mature (mOSN) state through well-defined sequential morphological and molecular transitions, but the precise mechanisms controlling OSN maturation remain largely unknown. We have identified that a GTPase, ARL13B, has a transient and maturation state-dependent expression in OSNs marking the emergence of a primary cilium. Utilizing an iOSN-specific Arl13b-null murine model, we examined the role of ARL13B in the maturation of OSNs. The loss of Arl13b in iOSNs caused a profound dysregulation of the cellular homeostasis and development of the OE. Importantly, Arl13b null OSNs demonstrated a delay in the timing of their maturation. Finally, the loss of Arl13b resulted in severe deformation in the structure and innervation of glomeruli. Our findings demonstrate a previously unknown role of ARL13B in the maturation of OSNs and development of the OE.


Subject(s)
ADP-Ribosylation Factors , GTP Phosphohydrolases , Olfactory Receptor Neurons , Animals , Mice , Cilia , Neurogenesis , Olfactory Mucosa , ADP-Ribosylation Factors/genetics
17.
EMBO Rep ; 25(7): 3040-3063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849673

ABSTRACT

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.


Subject(s)
Carrier Proteins , Cilia , Discs Large Homolog 1 Protein , TRPP Cation Channels , Animals , Cilia/metabolism , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Mice , Discs Large Homolog 1 Protein/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Humans , Protein Transport , Mice, Knockout , Kidney/metabolism , Epithelial Cells/metabolism , Protein Binding , Vesico-Ureteral Reflux/metabolism , Vesico-Ureteral Reflux/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Urogenital Abnormalities
18.
Proc Natl Acad Sci U S A ; 120(4): e2209964120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669111

ABSTRACT

Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.


Subject(s)
Ferrets , Hedgehog Proteins , Animals , Female , Humans , Mice , Pregnancy , Central Nervous System/metabolism , Cilia/genetics , Cilia/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mice, Knockout , Signal Transduction
19.
Proc Natl Acad Sci U S A ; 120(22): e2302624120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37205712

ABSTRACT

Human islet primary cilia are vital glucose-regulating organelles whose structure remains uncharacterized. Scanning electron microscopy (SEM) is a useful technique for studying the surface morphology of membrane projections like cilia, but conventional sample preparation does not reveal the submembrane axonemal structure, which holds key implications for ciliary function. To overcome this challenge, we combined SEM with membrane-extraction techniques to examine primary cilia in native human islets. Our data show well-preserved cilia subdomains which demonstrate both expected and unexpected ultrastructural motifs. Morphometric features were quantified when possible, including axonemal length and diameter, microtubule conformations, and chirality. We further describe a ciliary ring, a structure that may be a specialization in human islets. Key findings are correlated with fluorescence microscopy and interpreted in the context of cilia function as a cellular sensor and communications locus in pancreatic islets.


Subject(s)
Cilia , Islets of Langerhans , Humans , Microscopy, Electron, Scanning , Cilia/physiology , Microscopy, Fluorescence , Microtubules
20.
Proc Natl Acad Sci U S A ; 120(22): e2219686120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216541

ABSTRACT

Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.


Subject(s)
Autism Spectrum Disorder , Cilia , Mice , Animals , Cilia/metabolism , Autism Spectrum Disorder/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Neurons/metabolism , Hippocampus/metabolism , Receptors, Cell Surface/metabolism , Calcium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL