Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2314646121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502697

ABSTRACT

The design of protein-protein interfaces using physics-based design methods such as Rosetta requires substantial computational resources and manual refinement by expert structural biologists. Deep learning methods promise to simplify protein-protein interface design and enable its application to a wide variety of problems by researchers from various scientific disciplines. Here, we test the ability of a deep learning method for protein sequence design, ProteinMPNN, to design two-component tetrahedral protein nanomaterials and benchmark its performance against Rosetta. ProteinMPNN had a similar success rate to Rosetta, yielding 13 new experimentally confirmed assemblies, but required orders of magnitude less computation and no manual refinement. The interfaces designed by ProteinMPNN were substantially more polar than those designed by Rosetta, which facilitated in vitro assembly of the designed nanomaterials from independently purified components. Crystal structures of several of the assemblies confirmed the accuracy of the design method at high resolution. Our results showcase the potential of deep learning-based methods to unlock the widespread application of designed protein-protein interfaces and self-assembling protein nanomaterials in biotechnology.


Subject(s)
Nanostructures , Proteins , Models, Molecular , Proteins/chemistry , Amino Acid Sequence , Biotechnology , Protein Conformation
2.
Front Genet ; 14: 1347667, 2023.
Article in English | MEDLINE | ID: mdl-38274106

ABSTRACT

Introduction: Protein engineering, which aims to improve the properties and functions of proteins, holds great research significance and application value. However, current models that predict the effects of amino acid substitutions often perform poorly when evaluated for precision. Recent research has shown that ProteinMPNN, a large-scale pre-training sequence design model based on protein structure, performs exceptionally well. It is capable of designing mutants with structures similar to the original protein. When applied to the field of protein engineering, the diverse designs for mutation positions generated by this model can be viewed as a more precise mutation range. Methods: We collected three biological experimental datasets and compared the design results of ProteinMPNN for wild-type proteins with the experimental datasets to verify the ability of ProteinMPNN in improving protein fitness. Results: The validation on biological experimental datasets shows that ProteinMPNN has the ability to design mutation types with higher fitness in single and multi-point mutations. We have verified the high accuracy of ProteinMPNN in protein engineering tasks from both positive and negative perspectives. Discussion: Our research indicates that using large-scale pre trained models to design protein mutants provides a new approach for protein engineering, providing strong support for guiding biological experiments and applications in biotechnology.

3.
ACS Synth Biol ; 12(8): 2310-2319, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37556858

ABSTRACT

We used the deep learning tool ProteinMPNN to redesign ubiquitin (Ub) as a specific and functionally stimulating/enhancing binder of the Rsp5 E3 ligase. We generated 20 extensively mutated─up to 37 of 76 residues─recombinant Ub variants (UbVs), named R1 to R20, displaying well-folded structures and high thermal stabilities. These UbVs can also form stable complexes with Rsp5, as predicted using AlphaFold2. Three of the UbVs bound to Rsp5 with low micromolar affinity, with R4 and R12 effectively enhancing the Rsp5 activity six folds. AlphaFold2 predicts that R4 and R12 bind to Rsp5's exosite in an identical manner to the Rsp5-Ub template, thereby allosterically activating Rsp5-Ub thioester formation. Thus, we present a virtual solution for rapidly and cost-effectively designing UbVs as functional modulators of Ub-related enzymes.


Subject(s)
Saccharomyces cerevisiae Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL