Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 84(5): 883-896.e7, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38309275

ABSTRACT

DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage. Unlike free DNA, JET cleaves immobilized plasmid DNA at a specific site, the plasmid-anchoring point, showing that the anchor hinders DNA extrusion but not DNA cleavage. Structures of plasmid-bound JetABC reveal two presumably stalled SMC motor units that are drastically rearranged from the resting state, together entrapping a U-shaped DNA segment, which is further converted to kinked V-shaped cleavage substrate by JetD nuclease binding. Our findings uncover mechanical bending of residual unextruded DNA as molecular signature for plasmid recognition and non-self DNA elimination. We moreover elucidate key elements of SMC loop extrusion, including the motor direction and the structure of a DNA-holding state.


Subject(s)
DNA , Endonucleases , DNA/metabolism , Plasmids/genetics , Prokaryotic Cells , Cell Cycle Proteins/metabolism
2.
Mol Cell ; 82(18): 3513-3522.e6, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35987200

ABSTRACT

DNA double-strand breaks (DSBs) threaten genome stability and are linked to tumorigenesis in humans. Repair of DSBs requires the removal of attached proteins and hairpins through a poorly understood but physiologically critical endonuclease activity by the Mre11-Rad50 complex. Here, we report cryoelectron microscopy (cryo-EM) structures of the bacterial Mre11-Rad50 homolog SbcCD bound to a protein-blocked DNA end and a DNA hairpin. The structures reveal that Mre11-Rad50 bends internal DNA for endonucleolytic cleavage and show how internal DNA, DNA ends, and hairpins are processed through a similar ATP-regulated conformational state. Furthermore, Mre11-Rad50 is loaded onto blocked DNA ends with Mre11 pointing away from the block, explaining the distinct biochemistries of 3' → 5' exonucleolytic and endonucleolytic incision through the way Mre11-Rad50 interacts with diverse DNA ends. In summary, our results unify Mre11-Rad50's enigmatic nuclease diversity within a single structural framework and reveal how blocked DNA ends and hairpins are processed.


Subject(s)
DNA-Binding Proteins , DNA , MRE11 Homologue Protein/chemistry , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , DNA/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Endonucleases/genetics , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Humans , Nucleic Acid Conformation
3.
Annu Rev Genet ; 55: 285-307, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34813349

ABSTRACT

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins , DNA , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Homologous Recombination/genetics
4.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38512324

ABSTRACT

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Subject(s)
DNA Breaks, Double-Stranded , Animals , Male , Mice , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Loss of Function Mutation , Mammals/metabolism , Meiosis/genetics , Mutation , Spermatocytes/metabolism , Germ Cells/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism
5.
Mol Cell ; 75(2): 209-223.e6, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31201090

ABSTRACT

Multi-subunit SMC ATPases control chromosome superstructure and DNA topology, presumably by DNA translocation and loop extrusion. Chromosomal DNA is entrapped within the tripartite SMCkleisin ring. Juxtaposed SMC heads ("J heads") or engaged SMC heads ("E heads") split the SMCkleisin ring into "S" and "K" sub-compartments. Here, we map a DNA-binding interface to the S compartment of E heads SmcScpAB and show that head-DNA association is essential for efficient DNA translocation and for traversing highly transcribed genes in Bacillus subtilis. We demonstrate that in J heads, SmcScpAB chromosomal DNA resides in the K compartment but is absent from the S compartment. Our results imply that the DNA occupancy of the S compartment changes during the ATP hydrolysis cycle. We propose that DNA translocation involves DNA entry into and exit out of the S compartment, possibly by DNA transfer between compartments and DNA segment capture.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/genetics , Bacterial Proteins/chemistry , Cell Cycle Proteins/chemistry , Chromosomes, Bacterial/genetics , DNA/chemistry , DNA-Binding Proteins/chemistry , Hydrolysis , Multiprotein Complexes/genetics , Nucleic Acid Conformation , Prokaryotic Cells/chemistry
6.
Mol Cell ; 76(3): 382-394.e6, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31492634

ABSTRACT

DNA double-strand breaks (DSBs) threaten genome stability throughout life and are linked to tumorigenesis in humans. To initiate DSB repair by end joining or homologous recombination, the Mre11-nuclease Rad50-ATPase complex detects and processes diverse and obstructed DNA ends, but a structural mechanism is still lacking. Here we report cryo-EM structures of the E. coli Mre11-Rad50 homolog SbcCD in resting and DNA-bound cutting states. In the resting state, Mre11's nuclease is blocked by ATP-Rad50, and the Rad50 coiled coils appear flexible. Upon DNA binding, the two coiled coils zip up into a rod and, together with the Rad50 nucleotide-binding domains, form a clamp around dsDNA. Mre11 moves to the side of Rad50, binds the DNA end, and assembles a DNA cutting channel for the nuclease reactions. The structures reveal how Mre11-Rad50 can detect and process diverse DNA ends and uncover a clamping and gating function for the coiled coils.


Subject(s)
Acid Anhydride Hydrolases/metabolism , DNA Breaks, Double-Stranded , DNA Replication , DNA, Bacterial/metabolism , Deoxyribonucleases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Exonucleases/metabolism , MRE11 Homologue Protein/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/ultrastructure , Cryoelectron Microscopy , DNA, Bacterial/genetics , DNA, Bacterial/ultrastructure , Deoxyribonucleases/genetics , Deoxyribonucleases/ultrastructure , Escherichia coli/genetics , Escherichia coli/ultrastructure , Escherichia coli Proteins/genetics , Escherichia coli Proteins/ultrastructure , Exonucleases/genetics , Exonucleases/ultrastructure , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/ultrastructure , Nucleic Acid Conformation , Structure-Activity Relationship
7.
Mol Cell ; 74(3): 466-480.e4, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30930055

ABSTRACT

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.


Subject(s)
DNA Topoisomerases, Type II/genetics , Herpesvirus 1, Human/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-akt/genetics , Virus Latency/genetics , Animals , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Herpesvirus 1, Human/pathogenicity , Humans , MRE11 Homologue Protein/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Neurons/metabolism , Neurons/virology , Phosphorylation , Rats , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
8.
EMBO Rep ; 25(8): 3432-3455, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943005

ABSTRACT

Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.


Subject(s)
Acid Anhydride Hydrolases , Cell Cycle Proteins , Cyclophilin A , DNA Repair , DNA Replication , Humans , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cyclophilin A/metabolism , Cyclophilin A/genetics , DNA Breaks, Double-Stranded , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Genomic Instability , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
9.
Mol Cell ; 67(2): 334-347.e5, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28689660

ABSTRACT

Multi-subunit SMC complexes control chromosome superstructure and promote chromosome disjunction, conceivably by actively translocating along DNA double helices. SMC subunits comprise an ABC ATPase "head" and a "hinge" dimerization domain connected by a 49 nm coiled-coil "arm." The heads undergo ATP-dependent engagement and disengagement to drive SMC action on the chromosome. Here, we elucidate the architecture of prokaryotic Smc dimers by high-throughput cysteine cross-linking and crystallography. Co-alignment of the Smc arms tightly closes the interarm space and misaligns the Smc head domains at the end of the rod by close apposition of their ABC signature motifs. Sandwiching of ATP molecules between Smc heads requires them to substantially tilt and translate relative to each other, thereby opening up the Smc arms. We show that this mechanochemical gating reaction regulates chromosome targeting and propose a mechanism for DNA translocation based on the merging of DNA loops upon closure of Smc arms.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosome Segregation , Chromosomes, Bacterial , Adenosine Triphosphate/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Crystallography, X-Ray , Cysteine , High-Throughput Screening Assays , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Conformation , Protein Multimerization , Protein Stability , Structure-Activity Relationship
10.
Drug Resist Updat ; 74: 101077, 2024 May.
Article in English | MEDLINE | ID: mdl-38518726

ABSTRACT

PURPOSE: Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer. METHODS: The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays. RESULTS: SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer. CONCLUSIONS: SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Protein Serine-Threonine Kinases , Synthetic Lethal Mutations , Animals , Female , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Synthetic Lethal Mutations/drug effects , Xenograft Model Antitumor Assays
11.
J Biol Chem ; 299(1): 102752, 2023 01.
Article in English | MEDLINE | ID: mdl-36436562

ABSTRACT

The MRE11-RAD50-NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs.


Subject(s)
Cell Cycle Proteins , DNA Breaks, Double-Stranded , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Deubiquitinating Enzymes/genetics , DNA , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , MRE11 Homologue Protein/genetics , Ubiquitination , Humans , Cell Line, Tumor , Ubiquitin Thiolesterase/metabolism , DNA-Binding Proteins/metabolism , Acid Anhydride Hydrolases/metabolism
12.
Int J Cancer ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924040

ABSTRACT

The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.

13.
Gastric Cancer ; 27(2): 210-220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38070008

ABSTRACT

BACKGROUND: Double-strand break repair protein (RAD50) gene plays important roles in genomic integrity, DNA double-strand break repair, cell cycle checkpoint activation, telomere maintenance, and meiotic recombination. The risk allele of RAD50 may negatively affect cancer by reducing the DNA repair capacity. Additionally, Sodium intake and Helicobacter pylori (H. pylori) infection are major risk factors for gastric cancer (GC). Our study investigated the association between polymorphisms in RAD50 gene and the risk of GC case-fatality. We evaluated whether the association differed with sodium intake or H. pylori infection. METHODS: We enrolled 490 patients from two hospitals between 2002 and 2006. Their survival or death was prospectively followed up until December 31, 2016, through a review of medical records and telephone surveys. The GC survival was assessed using the Cox proportional hazards regression analysis. RESULTS: In 319 GC cases, the total person-years were 1928.3, and the median survival years was 5.4 years. A total of 137 GC deaths were recorded. Our fully adjusted model showed that the GG type of RAD50 rs17772583 polymorphism is significantly associated with an increased risk of GC case-fatality (hazard ratio [HR] = 2.20, 95% confidence interval [CI] = 1.28-3.77) compared to that associated with the homozygous AA type. In the high sodium intake group, patients with the GG type of RAD50 rs17772583 showed a significantly higher GC case-fatality (HR = 8.61, 95% CI = 2.58-26.68) than that of patients with homozygous AA type. In the positive-H. pylori infection group, patients with GG-type RAD50 rs17772583 showed a significantly higher GC case-fatality (HR = 10.11, 95% CI = 2.81-36.35) than that of with AA homozygotes. CONCLUSIONS: Patients with GG-type RAD50 rs17772583, high sodium intake, or a positive-H. pylori infection are at a significantly increased risk of GC case-fatality compared to that associated with the absence of these risk factors.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Sodium, Dietary , Stomach Neoplasms , Humans , Stomach Neoplasms/complications , Helicobacter Infections/complications , Helicobacter Infections/genetics , Risk Factors , Republic of Korea/epidemiology , Case-Control Studies
14.
Mol Cell ; 64(2): 405-415, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27746018

ABSTRACT

The Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex orchestrates the cellular response to DSBs through its structural, enzymatic, and signaling roles. Xrs2/Nbs1 is essential for nuclear translocation of Mre11, but its role as a component of the complex is not well defined. Here, we demonstrate that nuclear localization of Mre11 (Mre11-NLS) is able to bypass several functions of Xrs2, including DNA end resection, meiosis, hairpin resolution, and cellular resistance to clastogens. Using purified components, we show that the MR complex has equivalent activity to MRX in cleavage of protein-blocked DNA ends. Although Xrs2 physically interacts with Sae2, we found that end resection in its absence remains Sae2 dependent in vivo and in vitro. MRE11-NLS was unable to rescue the xrs2Δ defects in Tel1/ATM kinase signaling and non-homologous end joining, consistent with the role of Xrs2 as a chaperone and adaptor protein coordinating interactions between the MR complex and other repair proteins.


Subject(s)
DNA End-Joining Repair , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Binding Sites , Camptothecin/pharmacology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded/drug effects , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/deficiency , Endonucleases/genetics , Exodeoxyribonucleases/metabolism , Gene Expression Regulation, Fungal , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Methyl Methanesulfonate/pharmacology , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
15.
Mol Cell ; 64(5): 951-966, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27889450

ABSTRACT

The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Multiprotein Complexes/metabolism , Animals , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases , Epistasis, Genetic , Exodeoxyribonucleases , Replication Protein A , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins
16.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836577

ABSTRACT

The Mre11-Rad50-Nbs1 complex (MRN) is important for repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). The endonuclease activity of MRN is critical for resecting 5'-ended DNA strands at DSB ends, producing 3'-ended single-strand DNA, a prerequisite for HR. This endonuclease activity is stimulated by Ctp1, the Schizosaccharomyces pombe homolog of human CtIP. Here, with purified proteins, we show that Ctp1 phosphorylation stimulates MRN endonuclease activity by inducing the association of Ctp1 with Nbs1. The highly conserved extreme C terminus of Ctp1 is indispensable for MRN activation. Importantly, a polypeptide composed of the conserved 15 amino acids at the C terminus of Ctp1 (CT15) is sufficient to stimulate Mre11 endonuclease activity. Furthermore, the CT15 equivalent from CtIP can stimulate human MRE11 endonuclease activity, arguing for the generality of this stimulatory mechanism. Thus, we propose that Nbs1-mediated recruitment of CT15 plays a pivotal role in the activation of the Mre11 endonuclease by Ctp1/CtIP.


Subject(s)
DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Peptides/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Amino Acid Sequence , Casein Kinase II/metabolism , Conserved Sequence , DNA Breaks, Double-Stranded , Phosphorylation
17.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473866

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation affecting up to 2.0% of adults around the world. The molecular background of RA has not yet been fully elucidated, but RA is classified as a disease in which the genetic background is one of the most significant risk factors. One hallmark of RA is impaired DNA repair observed in patient-derived peripheral blood mononuclear cells (PBMCs). The aim of this study was to correlate the phenotype defined as the efficiency of DNA double-strand break (DSB) repair with the genotype limited to a single-nucleotide polymorphism (SNP) of DSB repair genes. We also analyzed the expression level of key DSB repair genes. The study population contained 45 RA patients and 45 healthy controls. We used a comet assay to study DSB repair after in vitro exposure to bleomycin in PBMCs from patients with rheumatoid arthritis. TaqMan SNP Genotyping Assays were used to determine the distribution of SNPs and the Taq Man gene expression assay was used to assess the RNA expression of DSB repair-related genes. PBMCs from patients with RA had significantly lower bleomycin-induced DNA lesion repair efficiency and we identified more subjects with inefficient DNA repair in RA compared with the control (84.5% vs. 24.4%; OR 41.4, 95% CI, 4.8-355.01). Furthermore, SNPs located within the RAD50 gene (rs1801321 and rs1801320) increased the OR to 53.5 (95% CI, 4.7-613.21) while rs963917 and rs3784099 (RAD51B) to 73.4 (95% CI, 5.3-1011.05). These results were confirmed by decision tree (DT) analysis (accuracy 0.84; precision 0.87, and specificity 0.86). We also found elevated expression of RAD51B, BRCA1, and BRCA2 in PBMCs isolated from RA patients. The findings indicated that impaired DSB repair in RA may be related to genetic variations in DSB repair genes as well as their expression levels. However, the mechanism of this relation, and whether it is direct or indirect, needs to be elucidated.


Subject(s)
Arthritis, Rheumatoid , Leukocytes, Mononuclear , Male , Adult , Humans , Leukocytes, Mononuclear/pathology , Genotype , DNA Repair , Arthritis, Rheumatoid/pathology , Polymorphism, Single Nucleotide , DNA , Bleomycin , Genetic Predisposition to Disease
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38686720

ABSTRACT

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Subject(s)
Acid Anhydride Hydrolases , Cell Cycle Proteins , DNA Repair Enzymes , DNA-Binding Proteins , MRE11 Homologue Protein , Nuclear Proteins , Humans , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , DNA Repair , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Nijmegen Breakage Syndrome/metabolism , Nijmegen Breakage Syndrome/genetics
19.
J Clin Immunol ; 43(8): 2136-2145, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37794136

ABSTRACT

PURPOSE: The MRE11-RAD50-NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks. Pathogenic variants in NBN and MRE11 give rise to the autosomal-recessive diseases, Nijmegen breakage syndrome (NBS) and ataxia telangiectasia-like disorder, respectively. The clinical consequences of pathogenic variants in RAD50 are incompletely understood. We aimed to characterize a newly identified RAD50 deficiency/NBS-like disorder (NBSLD) patient with bone marrow failure and immunodeficiency. METHODS: We report on a girl with microcephaly, mental retardation, bird-like face, short stature, bone marrow failure and B-cell immunodeficiency. We searched for candidate gene by whole-exome sequencing and analyzed the cellular phenotype of patient-derived fibroblasts using immunoblotting, radiation sensitivity assays and lentiviral complementation experiments. RESULTS: Compound heterozygosity for two variants in the RAD50 gene (p.Arg83His and p.Glu485Ter) was identified in this patient. The expression of RAD50 protein and MRN complex formation was maintained in the cells derived from this patient. DNA damage-induced activation of the ATM kinase was markedly decreased, which was restored by the expression of wild-type (WT) RAD50. Radiosensitivity appeared inconspicuous in the patient-derived cell line as assessed by colony formation assay. The RAD50R83H missense substitution did not rescue the mitotic defect in complementation experiments using RAD50-deficient fibroblasts, whereas RAD50WT did. The RAD50E485X nonsense variant was associated with in-frame skipping of exon 10 (p.Glu485_545del). CONCLUSION: These findings indicate important roles of RAD50 in human bone marrow and immune cells. RAD50 deficiency/NBSLD can manifest as a distinct inborn error of immunity characterized by bone marrow failure and B-cell immunodeficiency.


Subject(s)
Immunologic Deficiency Syndromes , Nijmegen Breakage Syndrome , Female , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Nijmegen Breakage Syndrome/genetics , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/genetics , Bone Marrow Failure Disorders
20.
Biochem Soc Trans ; 51(4): 1571-1583, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37584323

ABSTRACT

SMC and SMC-like complexes promote chromosome folding and genome maintenance in all domains of life. Recently, they were also recognized as factors in cellular immunity against foreign DNA. In bacteria and archaea, Wadjet and Lamassu are anti-plasmid/phage defence systems, while Smc5/6 and Rad50 complexes play a role in anti-viral immunity in humans. This raises an intriguing paradox - how can the same, or closely related, complexes on one hand secure the integrity and maintenance of chromosomal DNA, while on the other recognize and restrict extrachromosomal DNA? In this minireview, we will briefly describe the latest understanding of each of these complexes in immunity including speculations on how principles of SMC(-like) function may explain how the systems recognize linear or circular forms of invading DNA.


Subject(s)
Cell Cycle Proteins , Chromosomes , Humans , Cell Cycle Proteins/genetics , DNA , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL