Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.747
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 93(1): 289-316, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38316136

ABSTRACT

RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).


Subject(s)
Signal Transduction , raf Kinases , ras Proteins , Humans , ras Proteins/metabolism , ras Proteins/genetics , ras Proteins/chemistry , raf Kinases/metabolism , raf Kinases/genetics , Animals , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics
2.
Cell ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39243762

ABSTRACT

Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor Ɵ (TGF-Ɵ) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-Ɵ and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-Ɵ. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-Ɵ gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.

3.
Cell ; 184(10): 2649-2664.e18, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33848463

ABSTRACT

Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.


Subject(s)
Biomolecular Condensates/metabolism , Cytoplasmic Granules/metabolism , Neoplasms/metabolism , Oncogene Proteins, Fusion/metabolism , ras Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Enzyme Activation , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , HEK293 Cells , Humans , SOS1 Protein/metabolism , Signal Transduction
4.
Cell ; 176(3): 491-504.e21, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612740

ABSTRACT

Increased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis inĀ vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity inĀ vitro and protein production in cells. METTL13 and eEF1AK55me2 levels are upregulated in cancer and negatively correlate with pancreatic and lung cancer patient survival. METTL13 deletion and eEF1AK55me2 loss dramatically reduce Ras-driven neoplastic growth in mouse models and in patient-derived xenografts (PDXs) from primary pancreatic and lung tumors. Finally, METTL13 depletion renders PDX tumors hypersensitive to drugs thatĀ target growth-signaling pathways. Together, our work uncovers a mechanism by which lethal cancers become dependent on the METTL13-eEF1AK55me2 axis to meet their elevated protein synthesis requirement and suggests that METTL13 inhibition may constitute a targetable vulnerability of tumors driven by aberrant Ras signaling.


Subject(s)
Methyltransferases/metabolism , Peptide Elongation Factor 1/metabolism , Adult , Aged , Animals , Carcinogenesis , Cell Line , Cell Transformation, Neoplastic/metabolism , Female , HEK293 Cells , Heterografts , Humans , Lysine/metabolism , Male , Methylation , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Peptide Elongation Factor 1/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , Proteomics , Signal Transduction
5.
Cell ; 176(5): 1113-1127.e16, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30712867

ABSTRACT

Activating mutations in NRAS account for 20%-30% of melanoma, but despite decades of research and inĀ contrast to BRAF, no effective anti-NRAS therapies have been forthcoming. Here, we identify a previously uncharacterized serine/threonine kinase STK19 as a novel NRAS activator. STK19 phosphorylates NRAS to enhance its binding to its downstream effectors and promotes oncogenic NRAS-mediated melanocyte malignant transformation. A recurrent D89N substitution in STK19 whose alterations were identified in 25% of human melanomas represents a gain-of-function mutation that interacts better with NRAS to enhance melanocyte transformation. STK19D89N knockin leads to skin hyperpigmentation and promotes NRASQ61R-driven melanomagenesis inĀ vivo. Finally, we developed ZT-12-037-01 (1a) as a specific STK19-targeted inhibitor and showed that it effectively blocks oncogenic NRAS-driven melanocyte malignant transformation and melanoma growth inĀ vitro and inĀ vivo. Together, our findings provide aĀ new and viable therapeutic strategy for melanomasĀ harboring NRAS mutations.


Subject(s)
GTP Phosphohydrolases/metabolism , Melanoma/genetics , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , HEK293 Cells , Humans , Melanocytes/metabolism , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Mutation , Phosphorylation , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction , Skin Neoplasms/genetics
6.
Cell ; 172(3): 578-589.e17, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29373830

ABSTRACT

KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS inĀ vitro; however, it is uncertain whether this approach would translate toĀ inĀ vivo. Here, we describe structure-based designĀ and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained inĀ vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency inĀ vivo. This study provides inĀ vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms, Experimental/drug therapy , Piperazines/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Cells, Cultured , Female , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Mutation , Piperazines/chemistry , Piperazines/therapeutic use , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Quinazolines/chemistry , Quinazolines/therapeutic use
7.
Cell ; 170(1): 17-33, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666118

ABSTRACT

RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies,Ā and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathwaysĀ that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.


Subject(s)
ras Proteins/metabolism , Animals , Cell Membrane/metabolism , Congenital Abnormalities/metabolism , Humans , Mental Disorders/metabolism , Mutation , Neoplasms/metabolism , Phylogeny , Signal Transduction , Yeasts , ras Proteins/chemistry , ras Proteins/genetics
8.
Cell ; 168(1-2): 239-251.e16, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28041850

ABSTRACT

K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sortĀ subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.


Subject(s)
Cell Membrane/metabolism , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Membrane/chemistry , Humans , Lipids/chemistry , Models, Molecular , Molecular Dynamics Simulation , Mutation , Neoprene/chemistry , Neoprene/metabolism , Protein Domains , Proto-Oncogene Proteins p21(ras)/genetics
9.
Cell ; 168(5): 890-903.e15, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28162770

ABSTRACT

The genetic dependencies of human cancers widely vary. Here, we catalog this heterogeneity and use it to identify functional gene interactions and genotype-dependent liabilities in cancer. By using genome-wide CRISPR-based screens, we generate a gene essentiality dataset across 14 human acute myeloid leukemia (AML) cell lines. Sets of genes with correlated patterns of essentiality across the lines reveal new gene relationships, the essential substrates ofĀ enzymes, and the molecular functions of uncharacterized proteins. Comparisons of differentially essential genes between Ras-dependent and -independent lines uncover synthetic lethal partners of oncogenic Ras. Screens in both human AML and engineered mouse pro-B cells converge on a surprisingly small number of genes in the Ras processing and MAPK pathways and pinpoint PREX1 as an AML-specific activator of MAPK signaling. Our findings suggest general strategies for defining mammalian gene networks and synthetic lethal interactions by exploiting the natural genetic and epigenetic diversity of human cancer cells.


Subject(s)
Gene Regulatory Networks , Leukemia, Myeloid, Acute/genetics , Animals , Carrier Proteins , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Epigenesis, Genetic , Genes, Essential , Humans , MAP Kinase Signaling System , Mice , Mitochondrial Proteins , Protein Processing, Post-Translational , ras Proteins/genetics
10.
Cell ; 171(6): 1301-1315.e14, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195074

ABSTRACT

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principalĀ instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of TĀ and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ TĀ cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.


Subject(s)
Adenocarcinoma/immunology , Adenoma/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Animals , Carcinogenesis , Chemokines, CC/immunology , Disease Models, Animal , Female , Inflammation/immunology , Inflammation/metabolism , Interleukin-23/immunology , Lung Neoplasms/pathology , Macrophage Inflammatory Proteins/immunology , Macrophages/immunology , Male , Mice , Tumor Microenvironment
11.
Cell ; 168(5): 878-889.e29, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235199

ABSTRACT

Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provideĀ chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found toĀ bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Animals , Antineoplastic Agents/chemistry , Calorimetry , Cell Line , Fibroblasts/metabolism , Heterografts , Humans , Mice , Neoplasm Transplantation , Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Signal Transduction , Small Molecule Libraries
12.
Mol Cell ; 84(15): 2807-2821, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39025071

ABSTRACT

RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.


Subject(s)
Signal Transduction , ras Proteins , Humans , ras Proteins/metabolism , ras Proteins/chemistry , Animals , Protein Binding , Models, Molecular , Structure-Activity Relationship , Protein Conformation , Guanosine Triphosphate/metabolism
13.
Cell ; 165(3): 643-55, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27104980

ABSTRACT

Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing aĀ common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling.


Subject(s)
Glycine/analogs & derivatives , RNA-Binding Proteins/chemistry , Signal Transduction/drug effects , Sulfones/pharmacology , Amino Acid Sequence , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Transformation, Neoplastic/drug effects , Crystallography, X-Ray , Dimerization , Glycine/administration & dosage , Glycine/chemistry , Glycine/pharmacology , Humans , MAP Kinase Signaling System , Mice , Mice, Nude , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Pancreatic Neoplasms/drug therapy , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , RNA-Binding Proteins/metabolism , Sequence Alignment , Sulfones/administration & dosage , Sulfones/chemistry , ras Proteins/metabolism , Polo-Like Kinase 1
14.
Mol Cell ; 83(14): 2509-2523.e13, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37402366

ABSTRACT

K-Ras frequently acquires gain-of-function mutations (K-RasG12D being the most common) that trigger significant transcriptomic and proteomic changes to drive tumorigenesis. Nevertheless, oncogenic K-Ras-induced dysregulation of post-transcriptional regulators such as microRNAs (miRNAs) during oncogenesis is poorly understood. Here, we report that K-RasG12D promotes global suppression of miRNA activity, resulting in the upregulation of hundreds of targets. We constructed a comprehensive profile of physiological miRNA targets in mouse colonic epithelium and tumors expressing K-RasG12D using Halo-enhanced Argonaute pull-down. Combining this with parallel datasets of chromatin accessibility, transcriptome, and proteome, we uncovered that K-RasG12D suppressed the expression of Csnk1a1 and Csnk2a1, subsequently decreasing Ago2 phosphorylation at Ser825/829/832/835. Hypo-phosphorylated Ago2 increased binding to mRNAs while reducing its activity to repress miRNA targets. Our findings connect a potent regulatory mechanism of global miRNA activity to K-Ras in a pathophysiological context and provide a mechanistic link between oncogenic K-Ras and the post-transcriptional upregulation of miRNA targets.


Subject(s)
MicroRNAs , Neoplasms , Animals , Mice , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Genes, ras , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Proteomics
15.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35613620

ABSTRACT

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Subject(s)
Neurofibromin 1 , Proto-Oncogene Proteins A-raf , ras GTPase-Activating Proteins , ErbB Receptors/genetics , ErbB Receptors/metabolism , Guanosine Triphosphate/metabolism , Humans , Neurofibromin 1/metabolism , Protein Binding , Proto-Oncogene Proteins A-raf/metabolism , Signal Transduction , ras GTPase-Activating Proteins/metabolism
16.
Mol Cell ; 82(22): 4262-4276.e5, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36347258

ABSTRACT

BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.


Subject(s)
Cysteine , Proto-Oncogene Proteins B-raf , Humans , Cysteine/genetics , Proto-Oncogene Proteins B-raf/genetics , Protein Domains , Mutation , Syndrome
17.
Mol Cell ; 82(5): 950-968.e14, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35202574

ABSTRACT

A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.


Subject(s)
GTP Phosphohydrolases , Signal Transduction , Animals , Crystallography, X-Ray , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Mammals/metabolism , Nucleotides , Proteins
18.
Mol Cell ; 82(7): 1288-1296.e5, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35353986

ABSTRACT

Mutations in the NF1 gene cause the familial genetic disease neurofibromatosis type I, as well as predisposition to cancer. The NF1 gene product, neurofibromin, is a GTPase-activating protein and acts as a tumor suppressor by negatively regulating the small GTPase, Ras. However, structural insights into neurofibromin activation remain incompletely defined. Here, we provide cryoelectron microscopy (cryo-EM) structures that reveal an extended neurofibromin homodimer in two functional states: an auto-inhibited state with occluded Ras-binding site and an asymmetric open state with an exposed Ras-binding site. Mechanistically, the transition to the active conformation is stimulated by nucleotide binding, which releases a lock that tethers the catalytic domain to an extended helical repeat scaffold in the occluded state. Structure-guided mutational analysis supports functional relevance of allosteric control. Disease-causing mutations are mapped and primarily impact neurofibromin stability. Our findings suggest a role for nucleotides in neurofibromin regulation and may lead to therapeutic modulation of Ras signaling.


Subject(s)
Neurofibromatosis 1 , Neurofibromin 1 , Cryoelectron Microscopy , GTPase-Activating Proteins/metabolism , Genes, Neurofibromatosis 1 , Humans , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/pathology , Neurofibromin 1/chemistry , Neurofibromin 1/genetics , Neurofibromin 1/metabolism
19.
Mol Cell ; 82(11): 1992-2005.e9, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35417664

ABSTRACT

Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.


Subject(s)
Phospholipids , Proto-Oncogene Proteins B-raf , Phospholipases A2 , Platelet Activating Factor/analogs & derivatives , Platelet Activating Factor/metabolism
20.
Trends Biochem Sci ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39358051

ABSTRACT

A recent report by Yun et al. describes the detection of RAS dimers using intact mass spectrometry and investigates the role that membrane lipids, nucleotide state, and binding partners have in their formation.

SELECTION OF CITATIONS
SEARCH DETAIL