Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Biol Chem ; 300(7): 107459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857861

ABSTRACT

The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 phosphatidylinositol (3,4,5)-trisphosphate binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.


Subject(s)
Adaptor Proteins, Signal Transducing , Guanine Nucleotide Exchange Factors , rac1 GTP-Binding Protein , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Protein Binding , Protein Conformation , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/chemistry , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/chemistry
2.
J Biol Chem ; 299(6): 104698, 2023 06.
Article in English | MEDLINE | ID: mdl-37059183

ABSTRACT

Identifying events that regulate the prenylation and localization of small GTPases will help define new strategies for therapeutic targeting of these proteins in disorders such as cancer, cardiovascular disease, and neurological deficits. Splice variants of the chaperone protein SmgGDS (encoded by RAP1GDS1) are known to regulate prenylation and trafficking of small GTPases. The SmgGDS-607 splice variant regulates prenylation by binding preprenylated small GTPases but the effects of SmgGDS binding to the small GTPase RAC1 versus the splice variant RAC1B are not well defined. Here we report unexpected differences in the prenylation and localization of RAC1 and RAC1B and their binding to SmgGDS. Compared to RAC1, RAC1B more stably associates with SmgGDS-607, is less prenylated, and accumulates more in the nucleus. We show that the small GTPase DIRAS1 inhibits binding of RAC1 and RAC1B to SmgGDS and reduces their prenylation. These results suggest that prenylation of RAC1 and RAC1B is facilitated by binding to SmgGDS-607 but the greater retention of RAC1B by SmgGDS-607 slows RAC1B prenylation. We show that inhibiting RAC1 prenylation by mutating the CAAX motif promotes RAC1 nuclear accumulation, suggesting that differences in prenylation contribute to the different nuclear localization of RAC1 versus RAC1B. Finally, we demonstrate RAC1 and RAC1B that cannot be prenylated bind GTP in cells, indicating that prenylation is not a prerequisite for activation. We report differential expression of RAC1 and RAC1B transcripts in tissues, consistent with these two splice variants having unique functions that might arise in part from their differences in prenylation and localization.


Subject(s)
Monomeric GTP-Binding Proteins , Protein Isoforms/genetics , Protein Isoforms/metabolism , Prenylation , Monomeric GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Protein Prenylation
3.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926281

ABSTRACT

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Subject(s)
Cardiomyopathies , Myocytes, Cardiac , Animals , Mice , Acyltransferases/genetics , Acyltransferases/metabolism , Cardiomegaly/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Histidine/metabolism , Lipoylation , Mice, Transgenic , Myocytes, Cardiac/metabolism
4.
J Biol Chem ; 296: 100516, 2021.
Article in English | MEDLINE | ID: mdl-33676892

ABSTRACT

Cells can switch between Rac1 (lamellipodia-based) and RhoA (blebbing-based) migration modes, but the molecular mechanisms regulating this shift are not fully understood. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, forms independent complexes with Rac1 and RhoA, selectively dissociating each from their common inhibitor RhoGDI. DGKζ catalytic activity is required for Rac1 dissociation but is dispensable for RhoA dissociation; instead, DGKζ stimulates RhoA release via a kinase-independent scaffolding mechanism. The molecular determinants that mediate the selective targeting of DGKζ to Rac1 or RhoA signaling complexes are unknown. Here, we show that protein kinase Cα (PKCα)-mediated phosphorylation of the DGKζ MARCKS domain increased DGKζ association with RhoA and decreased its interaction with Rac1. The same modification also enhanced DGKζ interaction with the scaffold protein syntrophin. Expression of a phosphomimetic DGKζ mutant stimulated membrane blebbing in mouse embryonic fibroblasts and C2C12 myoblasts, which was augmented by inhibition of endogenous Rac1. DGKζ expression in differentiated C2 myotubes, which have low endogenous Rac1 levels, also induced substantial membrane blebbing via the RhoA-ROCK pathway. These events were independent of DGKζ catalytic activity, but dependent upon a functional C-terminal PDZ-binding motif. Rescue of RhoA activity in DGKζ-null cells also required the PDZ-binding motif, suggesting that syntrophin interaction is necessary for optimal RhoA activation. Collectively, our results define a switch-like mechanism whereby DGKζ phosphorylation by PKCα plays a role in the interconversion between Rac1 and RhoA signaling pathways that underlie different cellular migration modes.


Subject(s)
Cell Movement , Diacylglycerol Kinase/physiology , Dystrophin-Associated Proteins/metabolism , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Neuropeptides/metabolism , Protein Kinase C-alpha/pharmacology , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Diglycerides/metabolism , Dystrophin-Associated Proteins/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Mice , Mice, Knockout , Myristoylated Alanine-Rich C Kinase Substrate/genetics , Neuropeptides/genetics , Protein Domains , rac1 GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/genetics
5.
J Biol Chem ; 295(15): 4822-4835, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32094223

ABSTRACT

IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a scaffold protein that interacts with numerous binding partners and thereby regulates fundamental biological processes. The functions of IQGAP1 are modulated by several mechanisms, including protein binding, self-association, subcellular localization, and phosphorylation. Proteome-wide screens have indicated that IQGAP1 is ubiquitinated, but the possible effects of this post-translational modification on its function are unknown. Here we characterized and evaluated the function of IQGAP1 ubiquitination. Using MS-based analysis in HEK293 cells, we identified six lysine residues (Lys-556, -1155, -1230, -1465, -1475, and -1528) as ubiquitination sites in IQGAP1. To elucidate the biological consequences of IQGAP1 ubiquitination, we converted each of these lysines to arginine and found that replacing two of these residues, Lys-1155 and Lys-1230, in the GAP-related domain of IQGAP1 (termed IQGAP1 GRD-2K) reduces its ubiquitination. Moreover, IQGAP1 GRD-2K bound a significantly greater proportion of the two Rho GTPases cell division cycle 42 (CDC42) and Rac family small GTPase 1 (RAC1) than did WT IQGAP1. Consistent with this observation, reconstitution of IQGAP1-null cells with IQGAP1 GRD-2K significantly increased the amount of active CDC42 and enhanced cell migration significantly more than WT IQGAP1. Our results reveal that ubiquitination of the CDC42 regulator IQGAP1 alters its ability to bind to and activate this GTPase, leading to physiological effects. Collectively, these findings expand our view of the role of ubiquitination in cell signaling and provide additional insight into CDC42 regulation.


Subject(s)
Arginine/metabolism , Lysine/metabolism , Ubiquitin/metabolism , Ubiquitination , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , ras GTPase-Activating Proteins/metabolism , Arginine/chemistry , Arginine/genetics , Cell Movement , HEK293 Cells , Humans , Lysine/chemistry , Lysine/genetics , cdc42 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/genetics , ras GTPase-Activating Proteins/chemistry , ras GTPase-Activating Proteins/genetics
6.
J Biol Chem ; 295(29): 9948-9958, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32471868

ABSTRACT

Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene. NF1 encodes neurofibromin, a GTPase-activating protein for RAS proto-oncogene GTPase (RAS). Plexiform neurofibromas are a hallmark of NF1 and result from loss of heterozygosity of NF1 in Schwann cells, leading to constitutively activated p21RAS. Given the inability to target p21RAS directly, here we performed an shRNA library screen of all human kinases and Rho-GTPases in a patient-derived NF1-/- Schwann cell line to identify novel therapeutic targets to disrupt PN formation and progression. Rho family members, including Rac family small GTPase 1 (RAC1), were identified as candidates. Corroborating these findings, we observed that shRNA-mediated knockdown of RAC1 reduces cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) in NF1-/- Schwann cells. Genetically engineered Nf1flox/flox;PostnCre+ mice, which develop multiple PNs, also exhibited increased RAC1-GTP and phospho-ERK levels compared with Nf1flox/flox;PostnCre- littermates. Notably, mice in which both Nf1 and Rac1 loci were disrupted (Nf1flox/floxRac1flox/flox;PostnCre+) were completely free of tumors and had normal phospho-ERK activity compared with Nf1flox/flox ;PostnCre+ mice. We conclude that the RAC1-GTPase is a key downstream node of RAS and that genetic disruption of the Rac1 allele completely prevents PN tumor formation in vivo in mice.


Subject(s)
Gene Knockdown Techniques , Neoplasms, Second Primary , Neurofibroma, Plexiform , Neurofibromatosis 1 , Neuropeptides/deficiency , rac1 GTP-Binding Protein/deficiency , Animals , Mice , Mice, Knockout , Neoplasms, Second Primary/enzymology , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/pathology , Neoplasms, Second Primary/prevention & control , Neurofibroma, Plexiform/enzymology , Neurofibroma, Plexiform/genetics , Neurofibroma, Plexiform/prevention & control , Neurofibromatosis 1/enzymology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Neurofibromin 1/deficiency , Neurofibromin 1/metabolism , Neuropeptides/metabolism , Proto-Oncogene Mas , rac1 GTP-Binding Protein/metabolism
7.
Biochem Biophys Res Commun ; 548: 91-97, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33636640

ABSTRACT

Autotaxin (ATX) and its product lysophosphatidic acid (LPA) have been implicated in lung fibrosis and cancer. We have studied their roles in DNA damage induced by carcinogenic crystalline silica particles (CSi). In an earlier study on bronchial epithelia, we concluded that ATX, via paracrine signaling, amplifies DNA damage. This effect was seen at 6-16 h. A succeeding study showed that CSi induced NLRP3 phosphorylation, mitochondrial depolarization, double strand breaks (DSBs), and NHEJ repair enzymes within minutes. In the current study we hypothesized a role for the ATX-LPA axis also in this rapid DNA damage. Using 16HBE human bronchial epithelial cells, we show ATX secretion at 3 min, and that ATX inhibitors (HA130 and PF8380) prevented both CSi-induced mitochondrial depolarization and DNA damage (detected by γH2AX and Comet assay analysis). Experiments with added LPA gave similar rapid effects as CSi. Furthermore, Rac1 was activated at 3 min, and a Rac1 inhibitor (NSC23766) prevented mitochondrial depolarization and genotoxicity. In mice the bronchial epithelia exhibited histological signs of ATX activation and signs of DSBs (53BP1 positive nuclei) minutes after a single inhalation of CSi. Our data indicate that CSi rapidly activate the ATX-LPA axis and within minutes this leads to DNA damage in bronchial epithelial cells. Thus, ATX mediates very rapid DNA damaging effects of inhaled particles.


Subject(s)
DNA Damage , Phosphoric Diester Hydrolases/metabolism , Respiratory Mucosa/pathology , Silicon Dioxide/chemistry , rac1 GTP-Binding Protein/metabolism , Animals , Crystallization , DNA Breaks, Double-Stranded/drug effects , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Isoxazoles/pharmacology , Lysophospholipids/pharmacology , Male , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , Propionates/pharmacology , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , rac1 GTP-Binding Protein/antagonists & inhibitors
8.
J Biol Chem ; 294(2): 531-546, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30446620

ABSTRACT

G protein-coupled receptors stimulate Rho guanine nucleotide exchange factors that promote mammalian cell migration. Rac and Rho GTPases exert opposing effects on cell morphology and are stimulated downstream of Gßγ and Gα12/13 or Gαq, respectively. These Gα subunits might in turn favor Rho pathways by preventing Gßγ signaling to Rac. Here, we investigated whether Gßγ signaling to phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a key Gßγ chemotactic effector, is directly controlled by Rho-activating Gα subunits. We show that pharmacological inhibition of Gαq makes P-REX1 activation by Gq/Gi-coupled lysophosphatidic acid receptors more effective. Moreover, chemogenetic control of Gi and Gq by designer receptors exclusively activated by designer drugs (DREADDs) confirmed that Gi differentially activates P-REX1. GTPase-deficient GαqQL and Gα13QL variants formed stable complexes with Gßγ, impairing its interaction with P-REX1. The N-terminal regions of these variants were essential for stable interaction with Gßγ. Pulldown assays revealed that chimeric Gα13-i2QL interacts with Gßγ unlike to Gαi2-13QL, the reciprocal chimera, which similarly to Gαi2QL could not interact with Gßγ. Moreover, Gßγ was part of tetrameric Gßγ-GαqQL-RGS2 and Gßγ-Gα13-i2QL-RGS4 complexes, whereas Gα13QL dissociated from Gßγ to interact with the PDZ-RhoGEF-RGS domain. Consistent with an integrated response, Gßγ and AKT kinase were associated with active SDF-1/CXCL12-stimulated P-REX1. This pathway was inhibited by GαqQL and Gα13QL, which also prevented CXCR4-dependent cell migration. We conclude that a coordinated mechanism prioritizes Gαq- and Gα13-mediated signaling to Rho over a Gßγ-dependent Rac pathway, attributed to heterotrimeric Gi proteins.


Subject(s)
Cell Movement , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells
9.
J Biol Chem ; 294(44): 16198-16213, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31515267

ABSTRACT

Ligand-dependent differences in the regulation and internalization of the µ-opioid receptor (MOR) have been linked to the severity of adverse effects that limit opiate use in pain management. MOR activation by morphine or [d-Ala2,N-MePhe4, Gly-ol]enkephalin (DAMGO) causes differences in spatiotemporal signaling dependent on MOR distribution at the plasma membrane. Morphine stimulation of MOR activates a Gαi/o-Gßγ-protein kinase C (PKC) α phosphorylation pathway that limits MOR distribution and is associated with a sustained increase in cytosolic extracellular signal-regulated kinase (ERK) activity. In contrast, DAMGO causes a redistribution of the MOR at the plasma membrane (before receptor internalization) that facilitates transient activation of cytosolic and nuclear ERK. Here, we used proximity biotinylation proteomics to dissect the different protein-interaction networks that underlie the spatiotemporal signaling of morphine and DAMGO. We found that DAMGO, but not morphine, activates Ras-related C3 botulinum toxin substrate 1 (Rac1). Both Rac1 and nuclear ERK activity depended on the scaffolding proteins IQ motif-containing GTPase-activating protein-1 (IQGAP1) and Crk-like (CRKL) protein. In contrast, morphine increased the proximity of the MOR to desmosomal proteins, which form specialized and highly-ordered membrane domains. Knockdown of two desmosomal proteins, junction plakoglobin or desmocolin-1, switched the morphine spatiotemporal signaling profile to mimic that of DAMGO, resulting in a transient increase in nuclear ERK activity. The identification of the MOR-interaction networks that control differential spatiotemporal signaling reported here is an important step toward understanding how signal compartmentalization contributes to opioid-induced responses, including anti-nociception and the development of tolerance and dependence.


Subject(s)
Analgesics, Opioid/metabolism , Receptors, Opioid, mu/metabolism , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Analgesics, Opioid/pharmacology , Animals , Cell Membrane/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , HEK293 Cells , Humans , Ligands , MAP Kinase Signaling System/physiology , Morphine/metabolism , Morphine/pharmacology , Phosphorylation , Protein Interaction Mapping/methods , Protein Interaction Maps , Receptors, Opioid, mu/genetics , Signal Transduction/physiology , rac1 GTP-Binding Protein/physiology , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/physiology
10.
J Biol Chem ; 293(40): 15397-15418, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30108175

ABSTRACT

The MET proto-oncogene-encoded receptor tyrosine kinase (MET) and AXL receptor tyrosine kinase (AXL) are independently operating receptor tyrosine kinases (RTKs) that are functionally associated with aggressive and invasive cancer cell growth. However, how MET and AXL regulate the migratory properties of cancer cells remains largely unclear. We report here that the addition of hepatocyte growth factor (HGF), the natural ligand of MET, to serum-starved human glioblastoma cells induces the rapid activation of both MET and AXL and formation of highly polarized MET-AXL clusters on the plasma membrane. HGF also promoted the formation of the MET and AXL protein complexes and phosphorylation of AXL, independent of AXL's ligand, growth arrest-specific 6 (GAS6). The HGF-induced MET-AXL complex stimulated rapid and dynamic cytoskeleton reorganization by activating the small GTPase RAC1, a process requiring both MET and AXL kinase activities. We further found that HGF also promotes the recruitment of ELMO2 and DOCK180, a bipartite guanine nucleotide exchange factor for RAC1, to the MET-AXL complex and thereby stimulates the RAC1-dependent cytoskeleton reorganization. We also demonstrated that the MET-AXL-ELMO2-DOCK180 complex is critical for HGF-induced cell migration and invasion in glioblastoma or other cancer cells. Our findings uncover a critical HGF-dependent signaling pathway that involves the assembly of a large protein complex consisting of MET, AXL, ELMO2, and DOCK180 on the plasma membrane, leading to RAC1-dependent cell migration and invasion in various cancer cells.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Growth Factor/pharmacology , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , rac GTP-Binding Proteins/genetics , rac1 GTP-Binding Protein/genetics , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Neoplasm Invasiveness , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Protein Transport/drug effects , Proto-Oncogene Mas , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , rac GTP-Binding Proteins/antagonists & inhibitors , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/agonists , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/metabolism , Axl Receptor Tyrosine Kinase
11.
J Biol Chem ; 293(20): 7674-7688, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29615491

ABSTRACT

Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis , Neuronal Outgrowth/physiology , Neurons/cytology , Nuclear Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Movement , Cells, Cultured , Humans , Nerve Tissue Proteins/genetics , Neurons/metabolism , Nuclear Proteins/genetics , Rats , rac1 GTP-Binding Protein/genetics
12.
J Biol Chem ; 292(7): 2741-2753, 2017 02 17.
Article in English | MEDLINE | ID: mdl-27986809

ABSTRACT

Axonal injury is a common cause of neurological dysfunction. Unfortunately, in contrast to axons from the peripheral nervous system, the limited capacity of regeneration of central nervous system (CNS) axons is a major obstacle for functional recovery in patients suffering neurological diseases that involve the subcortical white matter. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to the urokinase-type plasminogen activator receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface. uPAR expression increases after an injury, and signaling through uPAR promotes tissue remodeling. However, it is yet unknown whether uPA binding to uPAR has an effect on axonal recovery in the CNS. Here, we used in vitro and in vivo models of CNS axonal injury to test the hypothesis that uPA binding to uPAR promotes axonal regeneration in the CNS. We found that newly formed growth cones from axons re-emerging from an axonal injury express uPAR and that binding of uPA to this uPAR promotes axonal recovery by a mechanism that does not require the generation of plasmin. Our data indicate that the binding of recombinant uPA or endogenous uPA to uPAR induces membrane recruitment and activation of ß1 integrin via the low density lipoprotein receptor-related protein-1 (LRP1), which leads to activation of the Rho family small GTPase Rac1 and Rac1-induced axonal regeneration. Our results show that the uPA/uPAR/LRP1 system is a potential target for the development of therapeutic strategies to promote axonal recovery following a CNS injury.


Subject(s)
Axons/physiology , Central Nervous System/metabolism , Nerve Regeneration , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Humans , Integrin beta1/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Protein Binding
13.
J Biol Chem ; 292(43): 17777-17793, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28882897

ABSTRACT

T-cell lymphoma invasion and metastasis 1 (Tiam1) is a Dbl-family guanine nucleotide exchange factor (GEF) that specifically activates the Rho-family GTPase Rac1 in response to upstream signals, thereby regulating cellular processes including cell adhesion and migration. Tiam1 contains multiple domains, including an N-terminal pleckstrin homology coiled-coiled extension (PHn-CC-Ex) and catalytic Dbl homology and C-terminal pleckstrin homology (DH-PHc) domain. Previous studies indicate that larger fragments of Tiam1, such as the region encompassing the N-terminal to C-terminal pleckstrin homology domains (PHn-PHc), are auto-inhibited. However, the domains in this region responsible for inhibition remain unknown. Here, we show that the PHn-CC-Ex domain inhibits Tiam1 GEF activity by directly interacting with the catalytic DH-PHc domain, preventing Rac1 binding and activation. Enzyme kinetics experiments suggested that Tiam1 is auto-inhibited through occlusion of the catalytic site rather than by allostery. Small angle X-ray scattering and ensemble modeling yielded models of the PHn-PHc fragment that indicate it is in equilibrium between "open" and "closed" conformational states. Finally, single-molecule experiments support a model in which conformational sampling between the open and closed states of Tiam1 contributes to Rac1 dissociation. Our results highlight the role of the PHn-CC-Ex domain in Tiam1 GEF regulation and suggest a combinatorial model for GEF inhibition and activation of the Rac1 signaling pathway.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , rac1 GTP-Binding Protein/chemistry , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Kinetics , Pleckstrin Homology Domains , Protein Binding , Signal Transduction/physiology , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , X-Ray Diffraction , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
14.
J Biol Chem ; 291(51): 26364-26376, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27815503

ABSTRACT

IQ motif-containing GTPase activating protein 1 (IQGAP1) plays a central role in the physical assembly of relevant signaling networks that are responsible for various cellular processes, including cell adhesion, polarity, and transmigration. The RHO family proteins CDC42 and RAC1 have been shown to mainly interact with the GAP-related domain (GRD) of IQGAP1. However, the role of its RASGAP C-terminal (RGCT) and C-terminal domains in the interactions with RHO proteins has remained obscure. Here, we demonstrate that IQGAP1 interactions with RHO proteins underlie a multiple-step binding mechanism: (i) a high affinity, GTP-dependent binding of RGCT to the switch regions of CDC42 or RAC1 and (ii) a very low affinity binding of GRD and a C terminus adjacent to the switch regions. These data were confirmed by phosphomimetic mutation of serine 1443 to glutamate within RGCT, which led to a significant reduction of IQGAP1 affinity for CDC42 and RAC1, clearly disclosing the critical role of RGCT for these interactions. Unlike CDC42, an extremely low affinity was determined for the RAC1-GRD interaction, suggesting that the molecular nature of IQGAP1 interaction with CDC42 partially differs from that of RAC1. Our study provides new insights into the interaction characteristics of IQGAP1 with RHO family proteins and highlights the complementary importance of kinetic and equilibrium analyses. We propose that the ability of IQGAP1 to interact with RHO proteins is based on a multiple-step binding process, which is a prerequisite for the dynamic functions of IQGAP1 as a scaffolding protein and a critical mechanism in temporal regulation and integration of IQGAP1-mediated cellular responses.


Subject(s)
cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , ras GTPase-Activating Proteins/metabolism , Binding Sites , Humans , Kinetics , cdc42 GTP-Binding Protein/chemistry , cdc42 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/genetics , ras GTPase-Activating Proteins/chemistry , ras GTPase-Activating Proteins/genetics
15.
J Biol Chem ; 291(26): 13699-714, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27189938

ABSTRACT

6-Thiopurine (6-TP) prodrugs include 6-thioguanine and azathioprine. Both are widely used to treat autoimmune disorders and certain cancers. This study showed that a 6-thioguanosine triphosphate (6-TGTP), converted in T-cells from 6-TP, targets Rac1 to form a disulfide adduct between 6-TGTP and the redox-sensitive GXXXXGK(S/T)C motif of Rac1. This study also showed that, despite the conservation of the catalytic activity of RhoGAP (Rho-specific GAP) on the 6-TGTP-Rac1 adduct to produce the biologically inactive 6-thioguanosine diphosphate (6-TGDP)-Rac1 adduct, RhoGEF (Rho-specific GEF) cannot exchange the 6-TGDP adducted on Rac1 with free guanine nucleotide. The biologically inactive 6-TGDP-Rac1 adduct accumulates in cells because of the ongoing combined actions of RhoGEF and RhoGAP. Because other Rho GTPases, such as RhoA and Cdc42, also possess the GXXXXGK(S/T)C motif, the proposed mechanism for the inactivation of Rac1 also applies to RhoA and Cdc42. However, previous studies have shown that CD3/CD28-stimulated T-cells contain more activated Rac1 than other Rho GTPases such as RhoA and Cdc42. Accordingly, Rac1 is the main target of 6-TP in activated T-cells. This explains the T-cell-specific Rac1-targeting therapeutic action of 6-TP that suppresses the immune response. This proposed mechanism for the action of 6-TP on Rac1 performs a critical role in demonstrating the capability to design a Rac1-targeting chemotherapeutic agent(s) for autoimmune disorders. Nevertheless, the results also suggest that the targeting action of other Rho GTPases in other organ cells, such as RhoA in vascular cells, may be linked to cytotoxicities because RhoA plays a key role in vasculature functions.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Immunosuppressive Agents/pharmacokinetics , Prodrugs/pharmacology , Thionucleosides/pharmacokinetics , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/metabolism , Amino Acid Motifs , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , GTPase-Activating Proteins/metabolism , Humans , Rho Guanine Nucleotide Exchange Factors/metabolism , cdc42 GTP-Binding Protein/metabolism
16.
J Biol Chem ; 290(44): 26752-64, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26370090

ABSTRACT

The cornea is the anterior, transparent tissue of the human eye that serves as its main refractive element. Corneal endothelial cells are arranged as a monolayer on the posterior surface of the cornea and function as a pump to counteract the leakiness of its basement membrane. Maintaining the cornea in a slightly dehydrated state is critical for the maintenance of corneal transparency. Adult human corneal endothelial cells are G1-arrested, even in response to injury, leading to an age-dependent decline in endothelial cell density. Corneal edema and subsequent vision loss ensues when endothelial cell density decreases below a critical threshold. Vision loss secondary to corneal endothelial dysfunction is a common indication for transplantation in developed nations. An impending increase in demand for and a current global shortage of donor corneas will necessitate the development of treatments for vision loss because of endothelial dysfunction that do not rely on donor corneas. Wnt ligands regulate many critical cellular functions, such as proliferation, making them attractive candidates for modulation in corneal endothelial dysfunction. We show that WNT10B causes nuclear transport and binding of RAC1 and ß-catenin in human corneal endothelial cells, leading to the activation of Cyclin D1 expression and proliferation. Our findings indicate that WNT10B promotes proliferation in human corneal endothelial cells by simultaneously utilizing both ß-catenin-dependent and -independent pathways and suggest that its modulation could be used to treat vision loss secondary to corneal endothelial dysfunction.


Subject(s)
Endothelial Cells/metabolism , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , rac1 GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Transformed , Cell Proliferation/drug effects , Cornea/cytology , Cornea/drug effects , Cornea/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Dishevelled Proteins , Endothelial Cells/cytology , Endothelial Cells/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation , Humans , Interleukin-1beta/pharmacology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/genetics , beta Catenin/genetics , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/genetics
17.
J Biol Chem ; 290(14): 9171-82, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25694429

ABSTRACT

Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.


Subject(s)
Glycogen Phosphorylase/metabolism , Interleukin-12/pharmacology , T-Lymphocytes/drug effects , rac1 GTP-Binding Protein/metabolism , Base Sequence , Cell Line , Cell Proliferation/drug effects , Chemotaxis, Leukocyte/drug effects , DNA Primers , Enzyme Activation , Humans , Polymerase Chain Reaction , Rho Guanine Nucleotide Exchange Factors/physiology , T-Lymphocytes/enzymology , T-Lymphocytes/metabolism
18.
J Biol Chem ; 290(10): 6408-18, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25586182

ABSTRACT

Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Blood Vessels/metabolism , Neovascularization, Physiologic , rac GTP-Binding Proteins/genetics , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/genetics , Blood Vessels/growth & development , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Guanine Nucleotide Exchange Factors/genetics , Human Umbilical Vein Endothelial Cells , Humans , Zebrafish/genetics , Zebrafish/growth & development , rac GTP-Binding Proteins/biosynthesis , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/genetics
19.
J Biol Chem ; 290(12): 7323-35, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25605715

ABSTRACT

Recent studies have reported conflicting results regarding the role of ARF6 in dendritic spine development, but no clear answer for the controversy has been suggested. We found that ADP-ribosylation factor 6 (ARF6) either positively or negatively regulates dendritic spine formation depending on neuronal maturation and activity. ARF6 activation increased the spine formation in developing neurons, whereas it decreased spine density in mature neurons. Genome-wide microarray analysis revealed that ARF6 activation in each stage leads to opposite patterns of expression of a subset of genes that are involved in neuronal morphology. ARF6-mediated Rac1 activation via the phospholipase D pathway is the coincident factor in both stages, but the antagonistic RhoA pathway becomes involved in the mature stage. Furthermore, blocking neuronal activity in developing neurons using tetrodotoxin or enhancing the activity in mature neurons using picrotoxin or chemical long term potentiation reversed the effect of ARF6 on each stage. Thus, activity-dependent dynamic changes in ARF6-mediated spine structures may play a role in structural plasticity of mature neurons.


Subject(s)
ADP-Ribosylation Factors/physiology , Dendritic Spines , Neurons/cytology , ADP-Ribosylation Factor 6 , Animals , Base Sequence , Cells, Cultured , Hippocampus/cytology , Hippocampus/embryology , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley
20.
J Biol Chem ; 290(17): 11119-29, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25778399

ABSTRACT

The integration of signals involved in deciding the fate of mesenchymal stem cells is largely unknown. We used proteomics profiling to identify RhoGDIß, an inhibitor of the small G-protein Rho family, as a component that regulates commitment of C3H10T1/2 mesenchymal stem cells to the adipocyte or smooth muscle cell lineage in response to bone morphogenetic protein 4 (BMP4). RhoGDIß is notably down-regulated during BMP4-induced adipocytic lineage commitment of C3H10T1/2 mesenchymal stem cells, and this involves the cytoskeleton-associated protein lysyl oxidase. Excess RhoGDIß completely prevents BMP4-induced commitment to the adipocyte lineage and simultaneously stimulates smooth muscle cell commitment by suppressing the activation of Rac1. Overexpression of RhoGDIß induces stress fibers of F-actin by a process involving phosphomyosin light chain, indicating that cytoskeletal tension regulated by RhoGDIß contributes to determining adipocyte versus myocyte commitment. Furthermore, the overexpression of RacV12 (constitutively active form of Rac1) totally rescues the inhibition of adipocyte commitment by RhoGDIß, simultaneously preventing formation of the smooth muscle-like phenotype and disrupting the stress fibers in cells overexpressing RhoGDIß. Collectively, these results indicate that RhoGDIß functions as a novel BMP4 signaling target that regulates adipogenesis and myogensis.


Subject(s)
Adipocytes/metabolism , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation/physiology , Muscle Development/physiology , Myocytes, Smooth Muscle/metabolism , Signal Transduction/physiology , rho Guanine Nucleotide Dissociation Inhibitor beta/metabolism , Adipocytes/cytology , Animals , Bone Morphogenetic Protein 4/genetics , Cell Line , Mice , Myocytes, Smooth Muscle/cytology , Neuropeptides/genetics , Neuropeptides/metabolism , Stress Fibers/genetics , Stress Fibers/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho Guanine Nucleotide Dissociation Inhibitor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL