Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.078
Filter
Add more filters

Publication year range
1.
Cell ; 187(11): 2746-2766.e25, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38631355

ABSTRACT

Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.


Subject(s)
Transcription Factors , Animals , Humans , Mice , Gene Expression Regulation , Mutation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line
2.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38091994

ABSTRACT

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Subject(s)
Brain , Transcriptome , Humans , Dopaminergic Neurons , GABAergic Neurons , Mesencephalon , Neocortex , Brain/growth & development , Brain/metabolism
3.
Cell ; 186(22): 4936-4955.e26, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37788668

ABSTRACT

Intrinsically disordered regions (IDRs) represent a large percentage of overall nuclear protein content. The prevailing dogma is that IDRs engage in non-specific interactions because they are poorly constrained by evolutionary selection. Here, we demonstrate that condensate formation and heterotypic interactions are distinct and separable features of an IDR within the ARID1A/B subunits of the mSWI/SNF chromatin remodeler, cBAF, and establish distinct "sequence grammars" underlying each contribution. Condensation is driven by uniformly distributed tyrosine residues, and partner interactions are mediated by non-random blocks rich in alanine, glycine, and glutamine residues. These features concentrate a specific cBAF protein-protein interaction network and are essential for chromatin localization and activity. Importantly, human disease-associated perturbations in ARID1B IDR sequence grammars disrupt cBAF function in cells. Together, these data identify IDR contributions to chromatin remodeling and explain how phase separation provides a mechanism through which both genomic localization and functional partner recruitment are achieved.


Subject(s)
Chromatin Assembly and Disassembly , Multiprotein Complexes , Nuclear Proteins , Humans , Chromatin , DNA-Binding Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism
4.
Cell ; 186(9): 1877-1894.e27, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116470

ABSTRACT

Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.


Subject(s)
Mumps virus , Persistent Infection , Humans , Mumps virus/physiology , Nucleocapsid , Phosphoproteins/metabolism , Virus Replication
5.
Cell ; 185(24): 4587-4603.e23, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36423581

ABSTRACT

Searches for the genetic underpinnings of uniquely human traits have focused on human-specific divergence in conserved genomic regions, which reflects adaptive modifications of existing functional elements. However, the study of conserved regions excludes functional elements that descended from previously neutral regions. Here, we demonstrate that the fastest-evolved regions of the human genome, which we term "human ancestor quickly evolved regions" (HAQERs), rapidly diverged in an episodic burst of directional positive selection prior to the human-Neanderthal split, before transitioning to constraint within hominins. HAQERs are enriched for bivalent chromatin states, particularly in gastrointestinal and neurodevelopmental tissues, and genetic variants linked to neurodevelopmental disease. We developed a multiplex, single-cell in vivo enhancer assay to discover that rapid sequence divergence in HAQERs generated hominin-unique enhancers in the developing cerebral cortex. We propose that a lack of pleiotropic constraints and elevated mutation rates poised HAQERs for rapid adaptation and subsequent susceptibility to disease.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Hominidae/genetics , Regulatory Sequences, Nucleic Acid , Neanderthals/genetics , Genome, Human , Genomics
6.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35858625

ABSTRACT

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Subject(s)
Chromosome Breakage , Chromosome Segregation , Aneuploidy , Animals , DNA , DNA Replication , Embryonic Development/genetics , Humans , Mammals/genetics
7.
Cell ; 183(7): 1742-1756, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33357399

ABSTRACT

It is unclear how disease mutations impact intrinsically disordered protein regions (IDRs), which lack a stable folded structure. These mutations, while prevalent in disease, are frequently neglected or annotated as variants of unknown significance. Biomolecular phase separation, a physical process often mediated by IDRs, has increasingly appreciated roles in cellular organization and regulation. We find that autism spectrum disorder (ASD)- and cancer-associated proteins are enriched for predicted phase separation propensities, suggesting that IDR mutations disrupt phase separation in key cellular processes. More generally, we hypothesize that combinations of small-effect IDR mutations perturb phase separation, potentially contributing to "missing heritability" in complex disease susceptibility.


Subject(s)
Disease/genetics , Mutation/genetics , Chromatin/metabolism , Humans , Intrinsically Disordered Proteins/genetics , Models, Biological , Proteome/metabolism
8.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32169217

ABSTRACT

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Subject(s)
Arabidopsis/metabolism , Protein Transport/physiology , Twin-Arginine-Translocation System/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Organelle Biogenesis , Organelles/metabolism , Phase Transition , Plant Proteins/metabolism , Thylakoids/metabolism , Twin-Arginine-Translocation System/physiology
9.
Cell ; 170(3): 507-521.e18, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28735753

ABSTRACT

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.


Subject(s)
Chromosome Fragility , DNA Breaks, Double-Stranded , Neoplasms/genetics , Animals , B-Lymphocytes/metabolism , CCCTC-Binding Factor , Cell Line, Tumor , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Poly-ADP-Ribose Binding Proteins , Repressor Proteins/metabolism
10.
Mol Cell ; 84(18): 3497-3512.e9, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39232584

ABSTRACT

Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.


Subject(s)
Biomolecular Condensates , Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Protein Binding , Organelles/metabolism , Humans , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry
11.
Cell ; 167(2): 341-354.e12, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27667684

ABSTRACT

Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.


Subject(s)
Autism Spectrum Disorder/genetics , Cognition , Genetic Predisposition to Disease , Neurogenesis/genetics , Point Mutation , Social Behavior , Alleles , Animals , Cerebral Cortex/metabolism , Gene Dosage , Genetic Variation , Genome, Human , Homeodomain Proteins/genetics , Humans , Introns , Mice , Mice, Transgenic , Nuclear Proteins/genetics , Quantitative Trait Loci , Regulatory Elements, Transcriptional , Repressor Proteins/genetics , Transcription Factors
12.
Mol Cell ; 83(23): 4413-4423.e10, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37979585

ABSTRACT

DEAD-box ATPases are major regulators of biomolecular condensates and orchestrate diverse biochemical processes that are critical for the functioning of cells. How DEAD-box proteins are selectively recruited to their respective biomolecular condensates is unknown. We explored this in the context of the nucleolus and DEAD-box protein DDX21. We find that the pH of the nucleolus is intricately linked to the transcriptional activity of the organelle and facilitates the recruitment and condensation of DDX21. We identify an evolutionarily conserved feature of the C terminus of DDX21 responsible for nucleolar localization. This domain is essential for zebrafish development, and its intrinsically disordered and isoelectric properties are necessary and sufficient for the ability of DDX21 to respond to changes in pH and form condensates. Molecularly, the enzymatic activities of poly(ADP-ribose) polymerases contribute to maintaining the nucleolar pH and, consequently, DDX21 recruitment and nucleolar partitioning. These observations reveal an activity-dependent physicochemical mechanism for the selective recruitment of biochemical activities to biomolecular condensates.


Subject(s)
DEAD-box RNA Helicases , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/chemistry , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Organelles/metabolism , Hydrogen-Ion Concentration
13.
Mol Cell ; 83(9): 1462-1473.e5, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37116493

ABSTRACT

DNA binding domains (DBDs) of transcription factors (TFs) recognize DNA sequence motifs that are highly abundant in genomes. Within cells, TFs bind a subset of motif-containing sites as directed by either their DBDs or DBD-external (nonDBD) sequences. To define the relative roles of DBDs and nonDBDs in directing binding preferences, we compared the genome-wide binding of 48 (∼30%) budding yeast TFs with their DBD-only, nonDBD-truncated, and nonDBD-only mutants. With a few exceptions, binding locations differed between DBDs and TFs, resulting from the cumulative action of multiple determinants mapped mostly to disordered nonDBD regions. Furthermore, TFs' preferences for promoters of the fuzzy nucleosome architecture were lost in DBD-only mutants, whose binding spread across promoters, implicating nonDBDs' preferences in this hallmark of budding yeast regulatory design. We conclude that DBDs and nonDBDs employ complementary DNA-targeting strategies, whose balance defines TF binding specificity along genomes.


Subject(s)
DNA , Transcription Factors , Binding Sites , Transcription Factors/metabolism , Protein Binding , DNA/genetics
14.
Mol Cell ; 83(12): 2035-2044.e7, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37295430

ABSTRACT

Molecular chaperones govern proteome health to support cell homeostasis. An essential eukaryotic component of the chaperone system is Hsp90. Using a chemical-biology approach, we characterized the features driving the Hsp90 physical interactome. We found that Hsp90 associated with ∼20% of the yeast proteome using its three domains to preferentially target intrinsically disordered regions (IDRs) of client proteins. Hsp90 selectively utilized an IDR to regulate client activity as well as maintained IDR-protein health by preventing the transition to stress granules or P-bodies at physiological temperatures. We also discovered that Hsp90 controls the fidelity of ribosome initiation that triggers a heat shock response when disrupted. Our study provides insights into how this abundant molecular chaperone supports a dynamic and healthy native protein landscape.


Subject(s)
Intrinsically Disordered Proteins , Molecular Chaperones , Proteome , Humans , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Intrinsically Disordered Proteins/metabolism
15.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37506698

ABSTRACT

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Subject(s)
RNA Splice Sites , RNA Splicing , Humans , RNA Splice Sites/genetics , Introns/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
16.
Mol Cell ; 83(8): 1251-1263.e6, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36996811

ABSTRACT

Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Nucleosomes/genetics , Nucleosomes/metabolism , Histones/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
17.
Mol Cell ; 82(15): 2885-2899.e8, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35841888

ABSTRACT

Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.


Subject(s)
Gene Expression Regulation , Ribosomes , Genome, Human/genetics , Humans , Open Reading Frames/genetics , Protein Biosynthesis , Proteins/metabolism , RNA/metabolism , Ribosomes/genetics , Ribosomes/metabolism
18.
Mol Cell ; 82(19): 3613-3631.e7, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36108632

ABSTRACT

Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.


Subject(s)
Genomic Imprinting , RNA, Long Noncoding , Alleles , Animals , Chromatin/genetics , DNA Methylation , GRB10 Adaptor Protein/genetics , Heart , Mice
19.
Mol Cell ; 82(11): 2084-2097.e5, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35483357

ABSTRACT

Gene activation by mammalian transcription factors (TFs) requires multivalent interactions of their low-complexity domains (LCDs), but how such interactions regulate transcription remains unclear. It has been proposed that extensive LCD-LCD interactions culminating in liquid-liquid phase separation (LLPS) of TFs is the dominant mechanism underlying transactivation. Here, we investigated how tuning the amount and localization of LCD-LCD interactions in vivo affects transcription of endogenous human genes. Quantitative single-cell and single-molecule imaging reveals that the oncogenic TF EWS::FLI1 requires a narrow optimum of LCD-LCD interactions to activate its target genes associated with GGAA microsatellites. Increasing LCD-LCD interactions toward putative LLPS represses transcription of these genes in patient-derived cells. Likewise, ectopically creating LCD-LCD interactions to sequester EWS::FLI1 into a well-documented LLPS compartment, the nucleolus, inhibits EWS::FLI1-driven transcription and oncogenic transformation. Our findings show how altering the balance of LCD-LCD interactions can influence transcriptional regulation and suggest a potential therapeutic strategy for targeting disease-causing TFs.


Subject(s)
Sarcoma, Ewing , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Mammals/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Transcriptional Activation/genetics
20.
Mol Cell ; 81(7): 1484-1498.e6, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33561389

ABSTRACT

Transcription factors (TFs) regulate gene expression by binding to specific consensus motifs within the local chromatin context. The mechanisms by which TFs navigate the nuclear environment as they search for binding sites remain unclear. Here, we used single-molecule tracking and machine-learning-based classification to directly measure the nuclear mobility of the glucocorticoid receptor (GR) in live cells. We revealed two distinct and dynamic low-mobility populations. One accounts for specific binding to chromatin, while the other represents a confinement state that requires an intrinsically disordered region (IDR), implicated in liquid-liquid condensate subdomains. Further analysis showed that the dwell times of both subpopulations follow a power-law distribution, consistent with a broad distribution of affinities on the GR cistrome and interactome. Together, our data link IDRs with a confinement state that is functionally distinct from specific chromatin binding and modulates the transcriptional output by increasing the local concentration of TFs at specific sites.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Receptors, Glucocorticoid/chemistry , Transcription Factors/chemistry , Animals , Female , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Mice , Rats , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL