ABSTRACT
Climate change and anthropogenic pressures have resulted in a significant shift in the invasion susceptibility and frequency of non-native species in mountain ecosystems. Cirsium arvense (L.) Scop. (Family: Asteraceae) is an invasive species that spreads quickly in mountains, especially in the trans-Himalayan region of Ladakh. The current study used a trait-based approach to evaluate the impact of local habitat heterogeneity (soil physico-chemical properties) on C. arvense. Thirteen plant functional traits (root, shoot, leaf, and reproductive traits) of C. arvense were studied in three different habitat types (agricultural, marshy, and roadside). Functional trait variability in C. arvense was higher between, than within habitats (between different populations). All the functional traits interacted with habitat change, except for leaf count and seed mass. Soil properties strongly affect C. arvense's resource-use strategies across habitats. The plant adapted to a resource-poor environment (roadside habitat) by conserving resources and to a resource-rich environment (agricultural and marshy land habitat) by acquiring them. The ability of C. arvense to use resources differently reflects its persistence in introduced habitats. In summary, our study shows that C. arvense invades different habitats in introduced regions through trait adaptations and resource-use strategies in the trans-Himalayan region.
Subject(s)
Cirsium , Ecosystem , Environmental Monitoring , Plants , SoilABSTRACT
BACKGROUNDS AND AIMS: Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species' coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. METHODS: Root uptake of [Formula: see text] and [Formula: see text], and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. KEY RESULTS: Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for [Formula: see text]. CONCLUSIONS: The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.
Subject(s)
Ammonium Compounds/metabolism , Nitrates/metabolism , Plant Leaves/physiology , Plant Roots/physiology , Poaceae/physiology , Austria , Environment , France , Species Specificity , United KingdomABSTRACT
The escalation of global nitrogen deposition levels has heightened the inhibitory impact of phosphorus limitation on plant growth in subtropical forests. Plant roots area particularly sensitive tissue to nitrogen and phosphorus elements. Changes in the morphological characteristics of plant roots signify alterations in adaptive strategies. However, our understanding of resource-use strategies of roots in this environment remains limited. In this study, we conducted a 10-month experiment at the Castanopsis kawakamii Nature Reserve to evaluate the response of traits of seedling roots (such as specific root length, average diameter, nitrogen content, and phosphorus content) to nitrogen and phosphorus addition. The aim was to reveal the adaptation strategies of roots in different nitrogen and phosphorus addition concentrations. The results showed that: (1) The single phosphorus and nitrogen-phosphorus interaction addition increased the specific root length, surface area, and root phosphorus content. In addition, single nitrogen addition promotes an increase in the average root diameter. (2) Non-nitrogen phosphorus addition and single nitrogen addition tended to adopt a conservative resource-use strategy to maintain growth under low phosphorus conditions. (3) Under the single phosphorus addition and interactive addition of phosphorus and nitrogen, the roots adopted an acquisitive resource-use strategy to obtain more available phosphorus resources. Accordingly, the adaptation strategy of seedling roots can be regulated by adding appropriate concentrations of nitrogen or phosphorus, thereby promoting the natural regeneration of subtropical forests.
ABSTRACT
Abiotic and biotic factors have considerable impact on the plasticity of plant functional traits, which influences forest structure and productivity; however, their inter-relationships have not been quantified for fragmented tropical dry forest (TDF) ecosystems. We asked the following questions: (1) what are the variations in the plasticity of functional traits due to soil moisture availability in TDF fragments? (2) what are the roles of soil nutrients and forest disturbances in influencing variations in the plasticity of functional traits in the TDF fragments? and (3) how do the variations in the plasticity of functional traits influence the structure and productivity of TDF fragments? Based on linear mixed-effects results, we observed significant variations among tree species for soil moisture content (SMC) under the canopy and selected functional traits across forest fragments. We categorized tree species across fragments by principal component analysis (PCA) and hierarchical clustering on principal components (HCPC) analyses into three functional types, viz., low wood density high deciduous (LWHD), high wood density medium deciduous (HWMD), and high wood density low deciduous (HWLD). Assemblage of functional traits suggested that the LWHD functional type exhibits a drought-avoiding strategy, whereas HWMD and HWLD adopt a drought-tolerant strategy. Our study showed that the variations in functional trait plasticity and the structural attributes of trees in the three functional types exhibit contrasting affinity with SMC, soil nutrients, and disturbances, although the LWHD functional type was comparatively more influenced by soil resources and disturbances compared to HWMD and HWLD along the declining SMC and edge distance gradients. Plasticity in functional traits for the LWHD functional type exhibited greater variations in traits associated with the conservation of water and resources, whereas for HWMD and HWLD, the traits exhibiting greater plasticity were linked with higher productivity and water transport. The cumulative influence of SMC, disturbances, and functional trait variations was also visible in the relative abundance of functional types in large and small sized fragments. Our analysis further revealed the critical differences in the responses of functional trait plasticity of the coexisting tree species in TDF, which suggests that important deciduous endemic species with drought-avoiding strategies might be prone to strategic exclusion under expected rises in anthropogenic disturbances, habitat fragmentation, and resource limitations.
ABSTRACT
The plant economics spectrum hypothesizes a correlation among resource-use related traits along one single axis, which determines species' growth rates and their ecological filtering along resource gradients. This concept has been mostly investigated and shown in perennial species, but has rarely been tested in annual species. Annuals evade unfavorable seasons as seeds and thus may underlie different constraints, with consequences for interspecific trait-trait, trait-growth, and trait-environment relations. To test the hypotheses of the plant economics spectrum in annual species, we measured twelve resource-use related leaf and root traits in 30 winter annuals from Israel under controlled conditions. Traits and their coordinations were related to species' growth rates (for 19 species) and their distribution along a steep rainfall gradient. Contrary to the hypotheses of the plant economics spectrum, in the investigated annuals traits were correlated along two independent axes, one of structural traits and one of carbon gain traits. Consequently, species' growth rates were related to carbon gain traits, but independent from structural traits. Species' distribution along the rainfall gradient was unexpectedly neither associated with species' scores along the axes of carbon gain or structural traits nor with growth rate. Nevertheless, root traits were related with species' distribution, indicating that they are relevant for species' filtering along rainfall gradients in winter annuals. Overall, our results showed that the functional constraints hypothesized by the plant economics spectrum do not apply to winter annuals, leading to unexpected trait-growth and trait-rainfall relations. Our study thus cautions to generalize trait-based concepts and findings between life-history strategies. To predict responses to global change, trait-based concepts should be explicitly tested for different species groups.
ABSTRACT
Functional trait ecology demonstrates the significance of the leaf economics spectrum in understanding plants' trade-off between acquisitive and conservative resource utilization. However, whether trait variations of different vegetative organs are coordinated and whether the plant economics spectrum is characterized by more than one vegetative organ remain controversial. To gain insights into these questions, within a tropical cloud forest in Hainan Island, a total of 13 functional traits of 84 tree species were analyzed here, including leaf, stem and root traits. By using standardized major axis (SMA) regression and principal components analysis, we examined the trait variations and correlations for deciphering plants' trade-off pattern. We found decreases of leaf phosphorus content, leaf nitrogen content and specific leaf area and increases of leaf mass per unit area (LMA), wood density and leaf thickness along the first principal component, while there were decreases of specific root length and specific root area and increases of root tissue density along the second principal component. Root phosphorus and nitrogen contents were significantly positively associated with the phosphorus and nitrogen contents of both stem and leaf. Wood density was significantly positively associated with LMA and leaf thickness, but negatively associated with leaf thickness and specific leaf area. Our results indicate that, in the tropical cloud forest, there is a "fast-slow" economic spectrum characterized by leaf and stem. Changes of nutrient trait are coordinated, whereas the relationships of morphological traits varied independently between plant above- and below-ground parts, while root nutrient traits are decoupled from root morphological traits. Our findings can provide an insight into the species coexistence and community assembly in high-altitude tropical forests.
ABSTRACT
The influence of plants on archaeal (AOA) and bacterial (AOB) ammonia oxidisers (AO) is poorly understood. Higher microbial activity in the rhizosphere, including organic nitrogen (N) mineralisation, may stimulate both groups, while ammonia uptake by plants may favour AOA, considered to prefer lower ammonia concentration. We therefore hypothesised (i) higher AOA and AOB abundances in the rhizosphere than bulk soil and (ii) that AOA are favoured over AOB in the rhizosphere of plants with an exploitative strategy and high N demand, especially (iii) during early growth, when plant N uptake is higher. These hypotheses were tested by growing 20 grassland plants, covering a spectrum of resource-use strategies, and determining AOA and AOB amoA gene abundances, rhizosphere and bulk soil characteristics and plant functional traits. Joint Bayesian mixed models indicated no increase in AO in the rhizosphere, but revealed that AOA were more abundant in the rhizosphere of exploitative plants, mostly grasses, and less abundant under conservative plants. In contrast, AOB abundance in the rhizosphere and bulk soil depended on pH, rather than plant traits. These findings provide a mechanistic basis for plant-ammonia oxidiser interactions and for links between plant functional traits and ammonia oxidiser ecology.
Subject(s)
Ammonia/metabolism , Archaea/metabolism , Bacteria/metabolism , Plants/microbiology , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bayes Theorem , Nitrogen/metabolism , Oxidation-Reduction , Plants/metabolism , Rhizosphere , Soil MicrobiologyABSTRACT
Recent research has shown that biodiversity may has its greatest impact on ecosystem functioning in heterogeneous environments. However, the role of soil heterogeneity as a modulator of ecosystem responses to changes in biodiversity remains poorly understood, as few biodiversity studies have explicitly considered this important ecosystem feature.We conducted a microcosm experiment over two growing seasons to evaluate the joint effects of changes in plant functional groups (grasses, legumes, non-legume forbs and a combination of them), spatial distribution of soil nutrients (homogeneous and heterogeneous) and nutrient availability (50 and 100 mg of nitrogen [N] added as organic material) on plant productivity and surrogates of carbon, phosphorous and N cycling (ß-glucosidase and acid phosphatase enzymes and in situ N availability, respectively).Soil nutrient heterogeneity interacted with nutrient availability and plant functional diversity to determine productivity and nutrient cycling responses. All the functional groups exhibited precise root foraging patterns. Above- and belowground productivity increased under heterogeneous nutrient supply. Surrogates of nutrient cycling were not directly affected by soil nutrient heterogeneity. Regardless of their above- and belowground biomass, legumes increased the availability of soil inorganic N and the activity of the acid phosphatase and ß-glucosidase enzymes.Our study emphasizes the role of soil nutrient heterogeneity as a modulator of ecosystem responses to changes in functional diversity beyond the species level. Functional group identity, rather than richness, can play a key role in determining the effects of biodiversity on ecosystem functioning.Synthesis. Our results highlight the importance of explicitly considering soil heterogeneity in diversity-ecosystem functioning experiments, where the identity of the plant functional group is of major importance. Such consideration will improve our ability to fully understand the role of plant diversity on ecosystem functioning in ubiquitous heterogeneous environments.