Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072048

ABSTRACT

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mechanotransduction, Cellular , Myofibroblasts , S100 Calcium-Binding Protein A4 , Animals , Mice , Cell Transdifferentiation , Fibrosis , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
2.
Biochem Biophys Res Commun ; 727: 150309, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38936224

ABSTRACT

Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.


Subject(s)
Adipose Tissue , Energy Metabolism , Homeostasis , Mice, Knockout , Versicans , Animals , Versicans/metabolism , Versicans/genetics , Mice , Adipose Tissue/metabolism , Obesity/metabolism , Obesity/genetics , Adipose Tissue, White/metabolism , Mice, Inbred C57BL , Male , Adipocytes/metabolism
3.
Rheumatology (Oxford) ; 63(3): 817-825, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37314987

ABSTRACT

OBJECTIVES: Our previous studies have demonstrated that the Damage Associated Molecular Pattern (DAMP) protein, S100A4, is overexpressed in the involved skin and peripheral blood of patients with SSc. It is associated with skin and lung involvement, and disease activity. By contrast, lack of S100A4 prevented the development of experimental dermal fibrosis. Herein we aimed to evaluate the effect of murine anti-S100A4 mAb 6B12 in the treatment of preestablished experimental dermal fibrosis. METHODS: The effects of 6B12 were assessed at therapeutic dosages in a modified bleomycin-induced dermal fibrosis mouse model by evaluating fibrotic (dermal thickness, proliferation of myofibroblasts, hydroxyproline content, phosphorylated Smad3-positive cell count) and inflammatory (leukocytes infiltrating the lesional skin, systemic levels of selected cytokines and chemokines) outcomes, and transcriptional profiling (RNA sequencing). RESULTS: Treatment with 7.5 mg/kg 6B12 attenuated and might even reduce pre-existing dermal fibrosis induced by bleomycin as evidenced by reduction in dermal thickness, myofibroblast count and collagen content. These antifibrotic effects were mediated by the downregulation of TGF-ß/Smad signalling and partially by reducing the number of leukocytes infiltrating the lesional skin and decrease in the systemic levels of IL-1α, eotaxin, CCL2 and CCL5. Moreover, transcriptional profiling demonstrated that 7.5 mg/kg 6B12 also modulated several profibrotic and proinflammatory processes relevant to the pathogenesis of SSc. CONCLUSION: Targeting S100A4 by the 6B12 mAb demonstrated potent antifibrotic and anti-inflammatory effects on bleomycin-induced dermal fibrosis and provided further evidence for the vital role of S100A4 in the pathophysiology of SSc.


Subject(s)
Alarmins , Skin , Animals , Humans , Mice , Antibodies, Monoclonal/pharmacology , Bleomycin/toxicity , Disease Models, Animal , S100 Calcium-Binding Protein A4/genetics , Skin/pathology , Fibrosis
4.
Cell Commun Signal ; 22(1): 27, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200591

ABSTRACT

BACKGROUND: Claudin-18.2 (CLDN18.2) has emerged as an alluring therapeutic target against gastrointestinal tumors in recent years. However, a thorough understanding of its regulatory mechanism in gastric cancer remains elusive. METHODS: We presented a comprehensive study comprising 185 gastric cancer patients, which included 112 cases with high CLDN18.2 expression and 73 cases with low CLDN18.2 expression as determined by immunohistochemistry. After overdressed CLDN18.2 in AGS and NUGC4 cell lines, we elucidated the functions of CLDN18.2 in connecting gastric cancer cells and cancer-associated fibroblasts (CAFs) through an in vitro adhesion models and in vivo lung colonization models. The molecular mechanism underlying CLDN18.2-mediated interaction between gastric cancer cells and CAFs was identified through RNA sequencing and protein-proximity labeling techniques in vivo. RESULTS: In our own cohort, a correlation was observed between high levels of CLDN18.2 expression and advanced cancer stage, poor prognosis, and heightened infiltration of CAFs. We elucidated a pivotal role of CLDN18.2 in mediating adhesion between gastric cancer cells and CAFs, which leads to the adhesion of cancer cells to stroma tissue and facilitates the clustering of cancer cells and CAFs into embolus, enhancing gastric cancer's metastatic progression and the risk of embolic death. Mechanistically, it was discovered that CAFs can activate adhesion and metastasis-related signaling pathways in CLDN18.2-positive gastric cancer cells. Furthermore, using an in vivo protein-proximity labeling approach, we identified S100 calcium binding protein A4 (S100A4) as a distinctive marker of CAFs that interacts with CLDN18.2 to enhance gastric cancer progression. CONCLUSIONS: Our findings illuminated the role of the CLDN18.2-mediated interaction between cancer cells and CAFs in promoting gastric cancer progression and embolism, thereby providing insight into potential therapeutic avenues for CLDN18.2 positive cancers. Video Abstract.


Subject(s)
Cancer-Associated Fibroblasts , Stomach Neoplasms , Humans , Cell Adhesion Molecules , Cell Line , Claudins
5.
Environ Toxicol ; 39(9): 4447-4458, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38953363

ABSTRACT

VPS9D1-AS1 functions as an oncogene in many cancers. However, its role and potential mechanism in the progression of endometrial cancer (EC) are not fully understood. VPS9D1-AS1 levels in EC and adjacent normal tissues were investigated using the TCGA-UCEC cohort and 24 paired clinical samples. The roles of VPS9D1-AS1 and miR-187-3p in cell cycle, proliferation, and apoptosis were evaluated by loss- and gain-of-function experiments. In addition, the effect of VPS9D1-AS1 on tumor growth was further investigated in vivo. Rescue experiments were performed to investigate the involvement of the miR-187-3p/S100A4 axis in VPS9D1-AS1 knockdown-mediated antitumor effects. VPS9D1-AS1 was highly expressed in EC tissues. VPS9D1-AS1 knockdown, similar to miR-187-3p overexpression, significantly inhibited cell proliferation, inhibited colony formation, induced cell cycle arrest, and facilitated apoptosis of KLE cells. MiR-187-3p bound directly to VPS9D1-AS1 and the 3'UTR of S100A4. Furthermore, VPS9D1-AS1 negatively regulated miR-187-3p while positively regulating S100A4 expression in EC cells. MiR-187-3p knockdown or S100A4 overexpression partially reversed the tumor suppressive function of VPS9D1-AS1 knockdown. The results suggest that VPS9D1-AS1 affects EC progression by regulating the miR-187-3p/S100A4 axis. This may provide a promising therapeutic target to help treat EC.


Subject(s)
Cell Proliferation , Endometrial Neoplasms , MicroRNAs , RNA, Long Noncoding , S100 Calcium-Binding Protein A4 , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism , Animals , Apoptosis/genetics , Disease Progression , Mice, Nude , Gene Expression Regulation, Neoplastic , Mice , Mice, Inbred BALB C
6.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928339

ABSTRACT

Receptors of cytokines are major regulators of the immune response. In this work, we have discovered two new ligands that can activate the TNFR1 (tumor necrosis factor receptor 1) receptor. Earlier, we found that the peptide of the Tag (PGLYRP1) protein designated 17.1 can interact with the TNFR1 receptor. Here, we have found that the Mts1 (S100A4) protein interacts with this peptide with a high affinity (Kd = 1.28 × 10-8 M), and that this complex is cytotoxic to cancer cells that have the TNFR1 receptor on their surface. This complex induces both apoptosis and necroptosis in cancer cells with the involvement of mitochondria and lysosomes in cell death signal transduction. Moreover, we have succeeded in locating the Mts1 fragment that is responsible for protein-peptide interaction, which highly specifically interacts with the Tag7 protein (Kd = 2.96 nM). The isolated Mts1 peptide M7 also forms a complex with 17.1, and this peptide-peptide complex also induces the TNFR1 receptor-dependent cell death. Molecular docking and molecular dynamics experiments show the amino acids involved in peptide binding and that may be used for peptidomimetics' development. Thus, two new cytotoxic complexes were created that were able to induce the death of tumor cells via the TNFR1 receptor. These results may be used in therapy for both cancer and autoimmune diseases.


Subject(s)
Apoptosis , Receptors, Tumor Necrosis Factor, Type I , Humans , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/chemistry , Apoptosis/drug effects , Protein Binding , Molecular Docking Simulation , Cell Line, Tumor , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Molecular Dynamics Simulation , Signal Transduction/drug effects , Necroptosis/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/metabolism , Cytokines
7.
Angiogenesis ; 26(1): 19-36, 2023 02.
Article in English | MEDLINE | ID: mdl-35829860

ABSTRACT

Tumor-induced lymphangiogenesis promotes the formation of new lymphatic vessels, contributing to lymph nodes (LNs) metastasis of tumor cells in both mice and humans. Vessel sprouting appears to be a critical step in this process. However, how lymphatic vessels sprout during tumor lymphangiogenesis is not well-established. Here, we report that S100A4 expressed in lymphatic endothelial cells (LECs) promotes lymphatic vessel sprouting in a growing tumor by regulating glycolysis. In mice, the loss of S100A4 in a whole body (S100A4-/-), or specifically in LECs (S100A4ΔLYVE1) leads to impaired tumor lymphangiogenesis and disrupted metastasis of tumor cells to sentinel LNs. Using a 3D spheroid sprouting assay, we found that S100A4 in LECs was required for the lymphatic vessel sprouting. Further investigations revealed that S100A4 was essential for the position and motility of tip cells, where it activated AMPK-dependent glycolysis during lymphatic sprouting. In addition, the expression of S100A4 in LECs was upregulated under hypoxic conditions. These results suggest that S100A4 is a novel regulator of tumor-induced lymphangiogenesis. Targeting S100A4 in LECs may be a potential therapeutic strategy for lymphatic tumor metastasis.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Mice , Humans , Animals , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Lymphangiogenesis/physiology , Lymphatic Metastasis/pathology , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
8.
Eur J Immunol ; 52(6): 978-993, 2022 06.
Article in English | MEDLINE | ID: mdl-35340022

ABSTRACT

Progressive loss of effector functions, especially IFN-γ secreting capability, in effector memory CD8+ T (CD8+ TEM ) cells plays a crucial role in asthma worsening. However, the mechanisms of CD8+ TEM cell dysfunction remain elusive. Here, we report that S100A4 drives CD8+ TEM cell dysfunction, impairing their protective memory response and promoting asthma worsening in an ovalbumin (OVA)-induced asthmatic murine model. We find that CD8+ TEM cells contain two subsets based on S100A4 expression. S100A4+ subsets exhibit dysfunctional effector phenotypes with increased proliferative capability, whereas S100A4- subsets retain effector function but are more inclined to apoptosis, giving rise to a dysfunctional CD8+ TEM cell pool. Mechanistically, S100A4 upregulation of mitochondrial metabolism results in a decrease of acetyl-CoA levels, which impair the transcription of effector genes, especially ifn-γ, facilitating cell survival, tolerance, and memory potential. Our findings thus reveal general insights into how S100A4+ CD8+ TEM cells reprogram into dysfunctional and less protective phenotypes to aggravate asthma.


Subject(s)
Asthma , CD8-Positive T-Lymphocytes , Animals , Asthma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Immune Tolerance , Immunologic Memory/genetics , Interferon-gamma/metabolism , Mice , Ovalbumin/metabolism
9.
J Transl Med ; 21(1): 721, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838657

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) development may be associated with tumor immune escape. This study explores whether the CHI3L1/MAF/CTLA4/S100A4 axis affects immune escape in TNBC through interplay with triple-negative breast cancer stem cells (TN-BCSCs). OBJECTIVE: The aim of this study is to utilize single-cell transcriptome sequencing (scRNA-seq) to uncover the molecular mechanisms by which the CHI3L1/MAF/CTLA4 signaling pathway may mediate immune evasion in triple-negative breast cancer through the interaction between tumor stem cells (CSCs) and immune cells. METHODS: Cell subsets in TNBC tissues were obtained through scRNA-seq, followed by screening differentially expressed genes in TN-BCSCs and B.C.s (CD44+ and CD24-) and predicting the transcription factor regulated by CHI3L1. Effect of CHI3L1 on the stemness phenotype of TNBC cells investigated. Effects of BCSCs-231-derived CHI3L1 on CTLA4 expression in T cells were explored after co-culture of BCSCs-231 cells obtained from microsphere culture of TN-BCSCs with T cells. BCSCs-231-treated T cells were co-cultured with CD8+ T cells to explore the resultant effect on T cell cytotoxicity. An orthotopic B.C. transplanted tumor model in mice with humanized immune systems was constructed, in which the Role of CHI3L1/MAF/CTLA4 in the immune escape of TNBC was explored. RESULTS: Eight cell subsets were found in the TNBC tissues, and the existence of TN-BCSCs was observed in the epithelial cell subset. CHI3L1 was related to the stemness phenotype of TNBC cells. TN-BCSC-derived CHI3L1 increased CTLA4 expression in T cells through MAF, inhibiting CD8+ T cell cytotoxicity and inducing immunosuppression. Furthermore, the CTLA4+ T cells might secrete S100A4 to promote the stemness phenotype of TNBC cells. CONCLUSIONS: TN-BCSC-derived CHI3L1 upregulates CTLA4 expression in T cells through MAF, suppressing the function of CD8+ T cells, which promotes the immune escape of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/genetics , CTLA-4 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Signal Transduction , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Chitinase-3-Like Protein 1/metabolism
10.
BMC Cardiovasc Disord ; 23(1): 220, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37118659

ABSTRACT

BACKGROUND: Acute coronary syndrome(ACS) is the leading cause of mortality and disability worldwide. Immune response has been confirmed to play a vital role in the occurrence and development of ACS. The objective of this prospective, multicenter, observational study is to define immune response and their relationship to the occurrence and progressive of ACS. METHODS: This is a multicenter, prospective, observational longitudinal cohort study. The primary outcome is the incidence of major adverse cardiovascular events (MACE) including in-stent restenosis, severe ventricular arrhythmia, heart failure, recurrent angina pectoris, and sudden cardiac death, and stroke one year later after ACS. Demographic characteristics, clinical data, treatments, and outcomes are collected by local investigators. Furthermore, freshly processed samples will be stained and assessed by flow cytometry. The expression of S100A4, CD47, SIRPα and Tim-3 on monocytes, macrophages and T cells in ACS patients were collected. FOLLOW-UP: during hospitalization, 3, 6 and 12 months after discharge. DISCUSSION: It is expected that this study will reveal the possible targets to improve the prognosis or prevent from occurrence of MACE in ACS patients. Since it's a multicenter study, the enrollment rate of participants will be accelerated and it can ensure that the collected data are more symbolic and improve the richness and credibility of the test basis. ETHICS AND DISSEMINATION: This study has been registered in Chinese Clinical Trial Registry Center. Ethical approval was obtained from the Affiliated Hospital of Guizhou Medical University. The dissemination will occur through the publication of articles in international peer-reviewed journals. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2200066382.


Subject(s)
Acute Coronary Syndrome , Humans , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/therapy , Acute Coronary Syndrome/epidemiology , Prospective Studies , Prognosis , Monocytes , Longitudinal Studies , T-Lymphocytes , Cohort Studies , Macrophages , Observational Studies as Topic , Multicenter Studies as Topic
11.
Environ Toxicol ; 38(6): 1431-1444, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36883729

ABSTRACT

The airway epithelial barrier dysfunction plays a crucial role in pathogenesis of asthma and causes the amplification of downstream inflammatory signal pathway. S100 calcium binding protein A4 (S100A4), which promotes metastasis, have recently been discovered as an effective inflammatory factor and elevated in bronchoalveolar lavage fluid in asthmatic mice. Vascular endothelial growth factor-A (VEGFA), is considered as vital regulator in vascular physiological activities. Here, we explored the probably function of S100A4 and VEGFA in asthma model dealt with house dust mite (HDM) extracts. Our results showed that secreted S100A4 caused epithelial barrier dysfunction, airway inflammation and the release of T-helper 2 cytokines through the activation of VEGFA/VEGFR2 signaling pathway, which could be partial reversed by S100A4 polyclonal antibody, niclosamide and S100A4 knockdown, representing a potential therapeutic target for airway epithelial barrier dysfunction in asthma.


Subject(s)
Asthma , Pyroglyphidae , Animals , Mice , Vascular Endothelial Growth Factor A , Asthma/chemically induced , Dermatophagoides pteronyssinus , Cytokines , Disease Models, Animal
12.
J Formos Med Assoc ; 122(7): 636-647, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36428148

ABSTRACT

BACKGROUND/PURPOSE: The S100 family proteins are involved in a variety of important biological processes, most notably immune and inflammatory responses. Their dysregulation also plays a role in the pathogenesis of human cancers. S100A4, also known as metastasin, has long been regarded as a biological marker in tumor progression and metastasis in multiple solid cancers, but its clinical significance in acute myeloid leukemia (AML) has not been extensively studied. METHODS: We retrospectively studied the association between S100A4 gene expression and the clinical characteristics, mutational and transcriptomic profiles of 227 AML patients treated with standard intensive chemotherapy. Genetic mutations of myeloid disease associated genes were analyzed by Sanger sequencing. Microarray-based transcriptomic gene expression profiling was performed on archived bone marrow mononuclear cells. Bioinformatic analyses, including differential gene expression and gene set enrichment analysis, were conducted to delineate the underlying pathogenic mechanisms. RESULTS: Higher S100A4 expression was associated with older age, monocytic differentiation of leukemic cells, and adverse clinical outcome. S100A4 high-expressors had inferior overall survival and disease-free survival; this finding could be validated in the TCGA AML cohort (both the microarray and RNA-seq platforms). Multivariate Cox regression analysis supported S100A4 as an independent prognostic factor. Bioinformatic analysis showed that AML with higher S100A4 expression was enriched for the interferon, NLRP3 inflammasome, and epithelial-mesenchymal transition pathways. CONCLUSION: This study provides evidence that S100A4 overexpression serves as a poor prognostic biomarker in AML, holds potential to guide treatment planning in the clinic, and indicates novel therapeutic directions.


Subject(s)
Biomarkers, Tumor , Leukemia, Myeloid, Acute , Humans , Prognosis , Retrospective Studies , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Gene Expression Profiling , S100 Proteins/genetics , S100 Proteins/metabolism , S100 Calcium-Binding Protein A4/genetics
13.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628889

ABSTRACT

Pyroptosis is a host immune strategy to defend against Mycobacterium tuberculosis (Mtb) infection. S100A4, a calcium-binding protein that plays an important role in promoting cancer progression as well as the pathophysiological development of various non-tumor diseases, has not been explored in Mtb-infected hosts. In this study, transcriptome analysis of the peripheral blood of patients with pulmonary tuberculosis (PTB) revealed that S100A4 and GSDMD were significantly up-regulated in PTB patients' peripheral blood. Furthermore, there was a positive correlation between the expression of GSDMD and S100A4. KEGG pathway enrichment analysis showed that differentially expressed genes between PTB patients and healthy controls were significantly related to inflammation, such as the NOD-like receptor signaling pathway and NF-κB signaling pathway. To investigate the regulatory effects of S100A4 on macrophage pyroptosis, THP-1 macrophages infected with Bacillus Calmette-Guérin (BCG) were pre-treated with exogenous S100A4, S100A4 inhibitor or si-S100A4. This research study has shown that S100A4 promotes the pyroptosis of THP-1 macrophages caused by BCG infection and activates NLRP3 inflammasome and NF-κB signaling pathways, which can be inhibited by knockdown or inhibition of S100A4. In addition, inhibition of NF-κB or NLRP3 blocks the promotion effect of S100A4 on BCG-induced pyroptosis of THP-1 macrophages. In conclusion, S100A4 activates the NF-κB/NLRP3 inflammasome signaling pathway to promote macrophage pyroptosis induced by Mtb infection. These data provide new insights into how S100A4 affects Mtb-induced macrophage pyroptosis.


Subject(s)
Mycobacterium bovis , Tuberculosis, Pulmonary , Humans , NF-kappa B , BCG Vaccine , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Signal Transduction , Macrophages , S100 Calcium-Binding Protein A4/genetics
14.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674695

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent and second deadliest cancer worldwide. In addition, metastasis directly causes up to 90% of all CRC deaths, highlighting the metastatic burden of the disease. Biomarkers such as S100A4 and MACC1 aid in identifying patients with a high risk of metastasis formation. High expression of S100A4 or MACC1 and to a greater extent the combination of both biomarkers is a predictor for metastasis and poor patient survival in CRC. MACC1 is a tumor-initiating and metastasis-promoting oncogene, whereas S100A4 has not been shown to initiate tumor formation but can, nevertheless, promote malignant tumor growth and metastasis formation. Cantharidin is a natural drug extracted from various blister beetle species, and its demethylated analogue norcantharidin has been shown in several studies to have an anti-cancer and anti-metastatic effect in different cancer entities such as CRC, breast cancer, and lung cancer. The impact of the natural compound cantharidin and norcantharidin on S100A4 and MACC1 gene expression, cancer cell migration, motility, and colony formation in vitro was tested. Here, for the first time, we have demonstrated that cantharidin and norcantharidin are transcriptional inhibitors of S100A4 and MACC1 mRNA expression, protein expression, and motility in CRC cells. Our results clearly indicate that cantharidin and, to a lesser extent, its analogue norcantharidin are promising compounds for efficient anti-metastatic therapy targeting the metastasis-inducing genes S100A4 and MACC1 for personalized medicine for cancer patients.


Subject(s)
Colorectal Neoplasms , Neoplasms , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Cantharidin/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Colorectal Neoplasms/pathology , S100 Calcium-Binding Protein A4/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
15.
Clin Exp Immunol ; 210(3): 309-320, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36370151

ABSTRACT

Non-small cell lung cancer (NSCLC) is the primary reason of tumor morbidity and mortality worldwide. We aimed to study the transfer process of S100A4 between cells and whether it affected NSCLC development by affecting STAT3 expression. First, S100A4 expression in NSCLC cells was measured. The exosomes in MRC-5, A549, and H1299 cells were isolated and identified. We constructed si-S100A4 and si-PD-L1 to transfect A549 cells and oe-S100A4 to transfect H1299 cells, and tested the transfection efficiency. Cell function experiments were performed to assess cell proliferation, clone number, apoptosis, cell cycle, migration, and invasion abilities. In addition, ChIP was applied to determine the targeting relationship between S100A4 and STAT3. Next, we explored NSCLC cell-derived exosomes role in NSCLC progress by transmitting S100A4. Finally, we verified the function of exosome-transmitted S100A4 in NSCLC in vivo. High expression of S100A4 was secreted by exosomes. After knocking down S100A4, cell proliferation ability was decreased, clones number was decreased, apoptosis was increased, G1 phase was increased, S phase was repressed, and migration and invasion abilities were also decreased. ChIP validated STAT3 and PD-L1 interaction. After knocking down S100A4, PD-L1 expression was decreased, while ov-STAT3 reversed the effect of S100A4 on PD-L1 expression. Meanwhile, S100A4 inhibited T-cell immune activity by activating STAT3. In addition, knockdown of PD-L1 inhibited cell proliferation, migration, and invasion. NSCLC cell-derived exosomes promoted cancer progression by transmitting S100A4 to activate STAT3 pathway. Finally, in vivo experiments further verified that exosome-transmitted S100A4 promoted NSCLC progression. Exosome-transmitted S100A4 induces immunosuppression and the development of NSCLC by activating STAT3.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , B7-H1 Antigen/metabolism , Exosomes/metabolism , Immunosuppression Therapy , Cell Proliferation , Cell Line, Tumor , Cell Movement , STAT3 Transcription Factor/metabolism , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/pharmacology
16.
Toxicol Appl Pharmacol ; 449: 116134, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35724704

ABSTRACT

Colorectal cancer (CRC) is the world's second most common cause of cancer-related death. Novel treatments are still urgently needed. S100 calcium-binding protein A4 (S100A4) was demonstrated to be an anticancer therapeutic target. Herein, we found that higher S100A4 expression was associated with a poorer prognosis in publicly available cohorts and a Taiwanese CRC patient cohort. To identify repurposed S100A4 inhibitors, we mined the Connectivity Map (CMap) database for clinical drugs mimicking the S100A4-knockdown gene signature. Ingenol mebutate, derived from the sap of the plant Euphorbia peplus, is approved as a topical treatment for actinic keratosis. The CMap analysis predicted ingenol mebutate as a potent S100A4 inhibitor. Indeed, both messenger RNA and protein levels of S100A4 were attenuated by ingenol mebutate in human CRC cells. In addition, CRC cells with higher S100A4 expressions and/or the wild-type p53 gene were more sensitive to ingenol mebutate, and their migration and invasion were inhibited by ingenol mebutate. Therefore, our results suggest the repurposing of ingenol mebutate for treating CRC by targeting S100A4.


Subject(s)
Colorectal Neoplasms , Diterpenes , S100 Calcium-Binding Protein A4 , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Diterpenes/pharmacology , Diterpenes/therapeutic use , Drug Repositioning , Humans , S100 Calcium-Binding Protein A4/antagonists & inhibitors , S100 Calcium-Binding Protein A4/genetics
17.
Cell Commun Signal ; 20(1): 46, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35392912

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most aggressive form of brain tumor and has vascular-rich features. The S100A4/non-muscle myosin IIA (NMIIA) axis contributes to aggressive phenotypes in a variety of human malignancies, but little is known about its involvement in GBM tumorigenesis. Herein, we examined the role of the S100A4/NMIIA axis during tumor progression and vasculogenesis in GBM. METHODS: We performed immunohistochemistry for S100A4, NMIIA, and two hypoxic markers, hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase 9 (CA9), in samples from 94 GBM cases. The functional impact of S100A4 knockdown and hypoxia were also assessed using a GBM cell line. RESULTS: In clinical GBM samples, overexpression of S100A4 and NMIIA was observed in both non-pseudopalisading (Ps) and Ps (-associated) perinecrotic lesions, consistent with stabilization of HIF-1α and CA9. CD34(+) microvascular densities (MVDs) and the interaction of S100A4 and NMIIA were significantly higher in non-Ps perinecrotic lesions compared to those in Ps perinecrotic areas. In non-Ps perinecrotic lesions, S100A4(+)/HIF-1α(-) GBM cells were recruited to the surface of preexisting host vessels in the vascular-rich areas. Elevated vascular endothelial growth factor A (VEGFA) mRNA expression was found in S100A4(+)/HIF-1α(+) GBM cells adjacent to the vascular-rich areas. In addition, GBM patients with high S100A4 protein expression had significantly worse OS and PFS than did patients with low S100A4 expression. Knockdown of S100A4 in the GBM cell line KS-1 decreased migration capability, concomitant with decreased Slug expression; the opposite effects were elicited by blebbistatin-dependent inhibition of NMIIA. CONCLUSION: S100A4(+)/HIF-1α(-) GBM cells are recruited to (and migrate along) preexisting vessels through inhibition of NMIIA activity. This is likely stimulated by extracellular VEGF that is released by S100A4(+)/HIF-1α(+) tumor cells in non-Ps perinecrotic lesions. In turn, these events engender tumor progression via acceleration of pro-tumorigenic vascular functions. Video abstract.


Subject(s)
Brain Neoplasms , Glioblastoma , Nonmuscle Myosin Type IIA , S100 Calcium-Binding Protein A4 , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carcinogenesis , Cell Line, Tumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Nonmuscle Myosin Type IIA/metabolism , S100 Calcium-Binding Protein A4/metabolism , Vascular Endothelial Growth Factor A/metabolism
18.
Inflamm Res ; 71(3): 369-376, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35217896

ABSTRACT

BACKGROUND: Excessive inflammation has been implicated in the immunopathogenesis of coronavirus disease 2019 (COVID-19). In the current study, the involvement of S100 calcium binding protein S100A4, S100A9, and S100A10 in the inflammatory settings of COVID-19 patients were evaluated. METHODS: Peripheral blood samples were obtained from 65 COVID-19 subjects and 50 healthy controls. From the blood samples, RNA was extracted and cDNA was synthesized, and then the mRNA expression levels of S100A4, S100A9, and S100A10 were measured by Real-time PCR. RESULTS: The mRNA expression of S100A4 (fold change [FC] = 1.45, P = 0.0011), S100A9 (FC = 1.47, P = 0.0013), and S100A10 (FC = 1.35, P = 0.0053) was significantly upregulated in COVID-19 patients than controls. The mRNA expression of S100A4 (FC = 1.43, P = 0.0071), (FC = 1.66, P = 0.0001), and S100A10 (FC = 1.63, P = 0.0003) was significantly upregulated in the severe COVID-19 subjects than mild-to-moderate subjects. There was a significant positive correlation between mRNA expression of S100A4 (ρ = 0.49, P = 0.030), S100A9 (ρ = 0.55, P = 0.009), and S100A10 (ρ = 0.39, P = 0.040) and D-dimer in the COVID-19 patients. The AUC for S100A4, S100A9, and S100A10 mRNAs were 0.79 (95% CI 0.66-0.92, P = 0.004), 0.80 (95% CI 0.67-0.93, P = 0.002), and 0.71 (95% CI 0.56-0.85, P = 0.010), respectively. CONCLUSIONS: S100A4, S100A9, and S100A10 play a role in the inflammatory conditions in COVID-19 patients and have potential in prognosis of severe form of COVID-19. Targeting these modules, hopefully, might confer a therapeutic tool in preventing sever symptoms in the COVID-19 patients.


Subject(s)
Annexin A2/genetics , COVID-19/genetics , Calgranulin B/genetics , S100 Calcium-Binding Protein A4/genetics , S100 Proteins/genetics , SARS-CoV-2 , Adult , Aged , COVID-19/blood , Female , Humans , Male , Middle Aged , Prognosis , RNA, Messenger/blood , Severity of Illness Index
19.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499426

ABSTRACT

Cervical cancer has a poor prognosis and is the fourth most common cancer among women. Dihydromyricetin (DHM), a flavonoid compound, exhibits several pharmacological activities, including anticancer effects; however, the effects of DHM on cervical cancer have received insufficient research attention. This study examined the antitumor activity and underlying mechanisms of DHM on human cervical cancer. Our results indicated that DHM inhibits migration and invasion in HeLa and SiHa cell lines. Mechanistically, RNA sequencing analysis revealed that DHM suppressed S100A4 mRNA expression in HeLa cells. Moreover, DHM inhibited the protein expressions of ß-catenin and GSK3ß through the regulated extracellular-signal-regulated kinase (ERK)1/2 signaling pathway. By using the ERK1/2 activator, T-BHQ, reverted ß-catenin and S100A4 protein expression and cell migration, which were reduced in response to DHM. In conclusion, our study indicated that DHM inhibited cell migration by reducing the S100A4 expression through the ERK1/2/ß-catenin pathway in human cervical cancer cell lines.


Subject(s)
Flavonols , S100 Calcium-Binding Protein A4 , Uterine Cervical Neoplasms , beta Catenin , Female , Humans , beta Catenin/metabolism , Cell Movement , HeLa Cells , MAP Kinase Signaling System , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Flavonols/pharmacology
20.
Int J Mol Sci ; 23(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36361563

ABSTRACT

Coronary artery lesions (CAL) are a major complication of Kawasaki disease (KD). The early prediction of CAL enables the medical personnel to apply adequate medical intervention. We collected the serum samples from the KD patients with CAL (n = 32) and those without CAL (n = 31), followed by a global screening with isobaric tagging for relative and absolute quantification (iTRAQ) technology and specific validation with an enzyme-linked immunosorbent assay (ELISA). iTRAQ identified 846 proteins in total in the serum samples, and four candidate proteins related to CAL were selected for ELISA validation as follows: Protein S100-A4 (S100A4), Catalase (CAT), Folate receptor gamma (FOLR3), and Galectin 10 (CLC). ELISA validation showed that the S100A4 level was significantly higher in KD patients with CAL than in those without CAL (225.2 ± 209.5 vs. 143.3 ± 83 pg/mL, p < 0.05). In addition, KD patients with CAL had a significantly lower CAT level than those without CAL (1.6 ± 1.5 vs. 2.7 ± 2.3 ng/mL, p < 0.05). Next, we found that S100A4 treatment on human coronary artery endothelial cells (HCAECs) reduced the abundance of cell junction proteins, which promoted the migration of HCAECs. Further assays also demonstrated that S100A4 treatment enhanced the permeability of the endothelial layer. These results concluded that S100A4 treatment resulted in an incompact endothelial layer and made HCAECs more susceptible to in vitro neutrophil infiltration. In addition, both upregulated S100A4 and downregulated CAT increased the risk of CAL in KD. Further in vitro study implied that S100A4 could be a potential therapeutic target for CAL in KD.


Subject(s)
Coronary Artery Disease , Mucocutaneous Lymph Node Syndrome , Humans , Mucocutaneous Lymph Node Syndrome/complications , Coronary Vessels/pathology , Neutrophil Infiltration , Endothelial Cells/pathology , Proteomics , Biomarkers , Coronary Artery Disease/drug therapy , Coronary Artery Disease/etiology , S100 Calcium-Binding Protein A4
SELECTION OF CITATIONS
SEARCH DETAIL