ABSTRACT
We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.
Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolismABSTRACT
SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.
Subject(s)
Chondrocytes , Genome-Wide Association Study , Mice , Humans , Animals , Chondrocytes/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Gene Expression Regulation , Cell Differentiation , Cell Proliferation , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolismABSTRACT
Pancreatic adenocarcinoma (PDA) is an aggressive disease driven by oncogenic KRAS and characterized by late diagnosis and therapeutic resistance. Here we show that deletion of the ataxia-telangiectasia group D-complementing (Atdc) gene, whose human homolog is up-regulated in the majority of pancreatic adenocarcinoma, completely prevents PDA development in the context of oncogenic KRAS. ATDC is required for KRAS-driven acinar-ductal metaplasia (ADM) and its progression to pancreatic intraepithelial neoplasia (PanIN). As a result, mice lacking ATDC are protected from developing PDA. Mechanistically, we show ATDC promotes ADM progression to PanIN through activation of ß-catenin signaling and subsequent SOX9 up-regulation. These results provide new insight into PDA initiation and reveal ATDC as a potential target for preventing early tumor-initiating events.
Subject(s)
Carcinogenesis , Carcinoma, Pancreatic Ductal/physiopathology , Pancreatic Neoplasms/physiopathology , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/physiology , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Carcinoma in Situ/pathology , Carcinoma in Situ/physiopathology , Carcinoma, Pancreatic Ductal/pathology , Cell Transdifferentiation , Cells, Cultured , DNA-Binding Proteins/metabolism , Down-Regulation , Gene Knockdown Techniques , Humans , Metaplasia , Mice , Mice, Transgenic , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , beta Catenin/metabolismABSTRACT
The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.
Subject(s)
Lung , SOX9 Transcription Factor , Stem Cells , Humans , Cell Differentiation/physiology , Lung/embryology , Signal Transduction , SOX9 Transcription Factor/metabolism , Stem Cells/metabolismABSTRACT
Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.
Subject(s)
Lung , Pulmonary Alveoli , Mice , Animals , Lung/metabolism , Cell Differentiation , Signal TransductionABSTRACT
Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous Sox9 null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous Sox9 null mutation (Sox9+/-) with the Sox9+/Y440X CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some Sox9+/Y440X mice survived, all Sox9+/- mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in Sox9+/Y440X compared with Sox9+/-. Activating Sox9Y440X specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing Sox9+/Y440X limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9Y440X failed to interact with ß-catenin and was unable to suppress transactivation of Ihh in cell-based assays. We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9Y440X, cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.
Subject(s)
Hedgehogs , Wnt Signaling Pathway , Humans , Mice , Animals , Hedgehogs/metabolism , Gene Expression Regulation , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Cell Differentiation/genetics , Proteins/metabolism , Chondrocytes/metabolismABSTRACT
Undescended testis (UDT) affects 6% of male births. Despite surgical correction, some men with unilateral UDT may experience infertility with the contralateral descended testis (CDT) showing no A-dark spermatogonia. To improve our understanding of the etiology of infertility in UDT, we generated a novel murine model of left unilateral UDT. Gubernaculum-specific Wnt4 knockout (KO) mice (Wnt4-cKO) were generated using retinoic acid receptor ß2-cre mice and were found to have a smaller left-unilateral UDT. Wnt4-cKO mice with abdominal UDT had an increase in serum follicle-stimulating hormone and luteinizing hormone and an absence of germ cells in the undescended testicle. Wnt4-cKO mice with inguinal UDT had normal hormonal profiles, and 50% of these mice had no sperm in the left epididymis. Wnt4-cKO mice had fertility defects and produced 52% fewer litters and 78% fewer pups than control mice. Wnt4-cKO testes demonstrated increased expression of estrogen receptor α and SOX9, upregulation of female gonadal genes, and a decrease in male gonadal genes in both CDT and UDT. Several WNT4 variants were identified in boys with UDT. The presence of UDT and fertility defects in Wnt4-cKO mice highlights the crucial role of WNT4 in testicular development.
Subject(s)
Cryptorchidism , Infertility , Female , Male , Humans , Mice , Animals , Gubernaculum , Cryptorchidism/genetics , Fertility/genetics , Spermatogonia , Mice, Knockout , Wnt4 Protein/geneticsABSTRACT
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , SOX9 Transcription Factor , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , Mice , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Cell Proliferation , Cells, Cultured , Mice, Inbred C57BL , Mice, Knockout , MaleABSTRACT
SMAD4 is a tumor suppressor mutated or silenced in multiple cancers, including oral cavity squamous cell carcinoma (OSCC). Human clinical samples and cell lines, mouse models and organoid culture were used to investigate the role that SMAD4 plays in progression from benign disease to invasive OSCC. Human OSCC lost detectable SMAD4 protein within tumor epithelium in 24% of cases, and this loss correlated with worse progression-free survival independent of other major clinical and pathological features. A mouse model engineered for KrasG12D expression in the adult oral epithelium induced benign papillomas, however the combination of KrasG12D with loss of epithelial Smad4 expression resulted in rapid development of invasive carcinoma with features of human OSCC. Examination of regulatory pathways in 3D organoid cultures of SMAD4+ and SMAD4- mouse tumors with Kras mutation found that either loss of SMAD4 or inhibition of TGFß signaling upregulated the WNT pathway and altered the extracellular matrix. The gene signature of the mouse tumor organoids lacking SMAD4 was highly similar to the gene signature of human head and neck squamous cell carcinoma. In summary, this work has uncovered novel mechanisms by which SMAD4 acts as a tumor suppressor in OSCC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Subject(s)
Disease Progression , Mouth Neoplasms , Smad4 Protein , Wnt Signaling Pathway , Smad4 Protein/metabolism , Smad4 Protein/genetics , Humans , Animals , Wnt Signaling Pathway/physiology , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mice , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Mutation , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Female , Gene Expression Regulation, Neoplastic , Male , Organoids/metabolism , Organoids/pathologyABSTRACT
Liver fibrosis is a significant health concern globally due to its association with severe liver conditions like cirrhosis and liver cancer. Histone lactylation has been implicated in the progression of hepatic fibrosis, but its specific role in liver fibrosis, particularly regarding H3K18 lactylation, remained unclear. To investigate this, we established in vivo and in vitro models of liver fibrosis using carbon tetrachloride (CCl4) injection in rats and stimulation of hepatic stellate cells (HSCs) with TGF-ß1, respectively. We found that histone lactylation, particularly H3K18 lactylation, was upregulated in both CCl4-induced rats and TGF-ß1-activated HSCs, indicating its potential involvement in liver fibrosis. Further experiments revealed that lactate dehydrogenase A (LDHA) knockdown inhibited H3K18 lactylation and had a beneficial effect on liver fibrosis by suppressing HSC proliferation, migration, and extracellular matrix (ECM) deposition. This suggests that H3K18 lactylation promotes liver fibrosis progression. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that H3K18 lactylation facilitated the transcription of SOX9, a transcription factor associated with fibrosis. Importantly, overexpression of SOX9 counteracted the effects of LDHA silencing on activated HSCs, indicating that SOX9 is downstream of H3K18 lactylation in promoting liver fibrosis. In summary, this study uncovers a novel mechanism by which H3K18 lactylation contributes to liver fibrosis by activating SOX9 transcription. This finding opens avenues for exploring new therapeutic strategies for hepatic fibrosis targeting histone lactylation pathways.
Subject(s)
Disease Progression , Hepatic Stellate Cells , Histones , Liver Cirrhosis , Rats, Sprague-Dawley , SOX9 Transcription Factor , Animals , Humans , Male , Rats , Carbon Tetrachloride , Cell Movement/genetics , Cell Proliferation , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Histones/metabolism , Histones/genetics , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/chemically induced , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Transcription, Genetic , Transforming Growth Factor beta1/metabolismABSTRACT
Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.
Subject(s)
Cell Movement , Cell Proliferation , Dipeptidyl Peptidase 4 , Hypertension, Pulmonary , Myocytes, Smooth Muscle , Pulmonary Artery , Rats, Sprague-Dawley , SOX9 Transcription Factor , Animals , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Male , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , YAP-Signaling Proteins/metabolism , Signal Transduction , Vascular Remodeling , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Cell Hypoxia , Hypoxia/metabolism , Cells, CulturedABSTRACT
Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.
Subject(s)
CRISPR-Cas Systems , Mesenchymal Stem Cells , Osteoarthritis , SOX9 Transcription Factor , Transcription Factor RelA , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Osteoarthritis/therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Disease Models, Animal , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Mesenchymal Stem Cell Transplantation/methods , Chondrogenesis/genetics , Gene Editing , Cell- and Tissue-Based Therapy/methods , Chondrocytes/metabolismABSTRACT
Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.
Subject(s)
Alagille Syndrome , Bile Ducts, Intrahepatic , Signal Transduction , Animals , Humans , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Mosaicism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Regeneration , Bile Ducts, Intrahepatic/cytology , Bile Ducts, Intrahepatic/pathology , FibroblastsABSTRACT
Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.
Subject(s)
Heart Valve Diseases , Mitral Valve , Humans , Mice , Animals , Mitral Valve/metabolism , Heart Valve Diseases/pathology , Heart Ventricles/metabolism , Myocardium/metabolism , Mice, Knockout , Transcription Factors/metabolismABSTRACT
Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.
Subject(s)
Lipoproteins, LDL , SOX9 Transcription Factor , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Animals , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Mice , Humans , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Epithelial-Mesenchymal Transition , Mice, Inbred C57BL , Male , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Cell Self Renewal , Endothelial Cells/metabolismABSTRACT
Development of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo. In vivo conditional knockout studies confirmed that Aurkb was required for lung development but was not necessary for postnatal growth and the repair of the adult lung after injury. Deletion of Aurkb in embryonic Sox9+ cells led to the formation of a stunted lung that retained the expression of Sox2 in the proximal airways, as well as Sox9 in the distal tips. Although we found no change in cell polarity, we showed that loss of Aurkb or chemical inhibition of Aurkb caused Sox9+ cells to arrest at G2/M, likely responsible for the lack of branch bifurcation. This work demonstrates the power of genetic screens in identifying novel regulators of Sox9+ progenitor cells and lung branching morphogenesis.
Subject(s)
Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Lung/embryology , SOX9 Transcription Factor/metabolism , Animals , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Organogenesis , SOX9 Transcription Factor/geneticsABSTRACT
Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.
Subject(s)
SOX9 Transcription Factor , Sex Determination Processes , Testis , Thrombospondins , Up-Regulation , Animals , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Male , Female , Mice , Thrombospondins/genetics , Thrombospondins/metabolism , Sex Determination Processes/genetics , Sex Determination Processes/physiology , Testis/metabolism , Gonads/metabolism , Ovary/metabolism , Forkhead Box Protein L2/genetics , Forkhead Box Protein L2/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Developmental , Sex Differentiation/genetics , Mice, Inbred C57BLABSTRACT
Sclerosing pneumocytoma is a rare and distinct lung neoplasm whose histogenesis and molecular alterations are the subject of ongoing research. Our recent study revealed that AKT1 internal tandem duplications (ITD), point mutations, and short indels were present in almost all tested sclerosing pneumocytomas, suggesting that AKT1 mutations are a major driving oncogenic event in this tumor. Although the pathogenic role of AKT1 point mutations is well established, the significance of AKT1 ITD in oncogenesis remains largely unexplored. We conducted comprehensive genomic and transcriptomic analyses of sclerosing pneumocytoma to address this knowledge gap. RNA-sequencing data from 23 tumors and whole-exome sequencing data from 44 tumors were used to obtain insights into their genetic and transcriptomic profiles. Our analysis revealed a high degree of genetic and transcriptomic similarity between tumors carrying AKT1 ITD and those with AKT1 point mutations. Mutational signature analysis revealed COSMIC signatures 1 and 5 as the prevailing signatures of sclerosing pneumocytoma, associated with the spontaneous deamination of 5-methylcytosine and an unknown etiology, respectively. RNA-sequencing data analysis revealed that the sclerosing pneumocytoma gene expression profile is characterized by activation of the PI3K/AKT/mTOR pathway, which exhibits significant similarity between tumors harboring AKT1 ITD and those with AKT1 point mutations. Notably, an upregulation of SOX9, a transcription factor known for its involvement in fetal lung development, was observed in sclerosing pneumocytoma. Specifically, SOX9 expression was prominent in the round cell component, whereas it was relatively lower in the surface cell component of the tumor. To the best of our knowledge, this is the first comprehensive investigation of the genomic and transcriptomic characteristics of sclerosing pneumocytoma. Results of the present study provide insights into the molecular attributes of sclerosing pneumocytoma and a basis for future studies of this enigmatic tumor.
Subject(s)
Phosphatidylinositol 3-Kinases , Pulmonary Sclerosing Hemangioma , Humans , Phosphatidylinositol 3-Kinases/genetics , Pulmonary Sclerosing Hemangioma/genetics , Pulmonary Sclerosing Hemangioma/pathology , Genomics , Gene Expression Profiling , RNAABSTRACT
Articular cartilage plays vital roles as a friction minimizer and shock absorber during joint movement but has a poor capacity to self-repair when damaged through trauma or disease. Cartilage tissue engineering is an innovative technique for cartilage regeneration, yet its therapeutic application requires chondrocytes in large numbers. Direct reprogramming of somatic cells to chondrocytes by expressing SOX9, KLF4, and c-MYC offers a promising option to generate chondrocytes in sufficient numbers; however, the low efficiency of the reprogramming system warrants further improvement. Here we referred to structural and functional features of SOX9 and performed alanine-scanning mutagenesis of functionally critical residues in the HMG box and at putative posttranslational modification (PTM) sites. We discovered that a SOX9 variant H131A/K398A, doubly mutated in the HMG box (H131) and at a PTM site (K398), significantly upregulated expression of chondrogenic genes and potently induced chondrocytes from mouse embryonic fibroblasts. The H131A/K398A variant remained unsumoylated in cells and exhibited a stronger DNA-binding activity than wild-type SOX9, especially when complexed with other proteins. Our results show that the novel SOX9 variant may be useful for efficient induction of chondrocytes and illuminate the strategic feasibility of mutating a transcription factor at functionally critical residues to expedite discovery of an optimized reprogramming factor.
Subject(s)
Cartilage, Articular , Chondrocytes , Animals , Mice , Chondrocytes/metabolism , Fibroblasts/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Cells, CulturedABSTRACT
BACKGROUND: The role of miR-145-5p in non-small cell lung cancer (NSCLC) has been studied, however, the regulation of hBMSCs-derived exosomes (Exo) transmitted miR-145-5p in NSCLC was still unknown. This study aimed to investigate the role of hBMSCs-derived exosomes (Exo) in the progression of NSCLC. METHODS: The Exo was extracted from hBMSCs and added to A549 and H1299 cell culture, followed by the detection of cell proliferation, migration, and invasion. The correlation between the expression of miR-145-5p and SOX9, as well as their binding relationship was determined by correlation analysis, luciferase gene reporter assay and RNA pull-down assays. The in vivo animal model was established to further verify the impact of hBMSCs-Exo. RESULTS: It showed that miR-145-5p was downregulated and SOX9 was upregulated in NSCLC tissues. HBMSCs-derived Exo, and hBMSCs-Exo with overexpression of miR-145-5p could inhibit cell proliferation, migration, and invasion of both A549 and H1299 cells, and prevent against tumor progression in vivo. MiR-145-5p and SOX9 were found to be able to bind to each other, and a negative correlation were observed between the expression of them in NSCLC tissues. Furthermore, inhibition of SOX9 could reversed the suppressed role of miR-145-5p in vitro and in vivo. CONCLUSION: Therefore, HBMSCs-Exo effectively transmitted miR-145-5p, leading to the suppression of malignant development in NSCLC through the regulation of SOX9.