Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
Add more filters

Publication year range
1.
Cytokine ; 179: 156608, 2024 07.
Article in English | MEDLINE | ID: mdl-38631185

ABSTRACT

BACKGROUND: Mounting evidence revealed that an imbalance of Gut Microbiota (GM) leads to metabolic disorders. Synbiotics through regulation of GM composition can be an effective intervention in the management of metabolic diseases. This study aimed to investigate the effects of multi-species synbiotic supplementation on serum interleukin10 (IL-10) and fecal Short Chain Fatty Acids (SCFAs) in patients with dyslipidemia. METHODS: In this double-blind, randomized, placebo-controlled clinical trial, fifty-six adult men with dyslipidemia were randomly allocated to intervention and control groups and received either synbiotic or placebo powder twice a day for 12 weeks. Each synbiotic sachet contained 6 species of probiotic microorganisms with a total dose of 3 × 1010 Colony Forming Unit (CFU) and 5 gr inulin and Fructooligosaccharide (FOS) as prebiotics. Blood and stool samples were collected at the baseline and end of the study. Dietary intake, physical activity, anthropometric measurements, serum IL-10, and fecal SCFAs were assessed before and after the intervention. RESULT: There were no significant differences between the baseline characteristics of patients in the two groups. Serum IL-10 was increased in the synbiotic group (p < 0.0001). Moreover, synbiotic supplementation increased fecal concentration of acetate (p < 0.0001), butyrate (p = 0.043), propionate (p < 0.0001), and valerate (p < 0.026). A significant positive correlation was observed between the changes in fecal butyrate level and serum IL-10 concentration in the control group (r = 0.48, p = 0.01). CONCLUSIONS: A Twelve-week synbiotic supplementation increased fecal SCFAs and improved inflammation in adult men with dyslipidemia.


Subject(s)
Dietary Supplements , Dyslipidemias , Fatty Acids, Volatile , Feces , Interleukin-10 , Synbiotics , Humans , Male , Feces/microbiology , Feces/chemistry , Synbiotics/administration & dosage , Double-Blind Method , Interleukin-10/blood , Dyslipidemias/blood , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/blood , Middle Aged , Adult , Gastrointestinal Microbiome , Oligosaccharides
2.
Diabetes Metab Res Rev ; 40(2): e3675, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37381688

ABSTRACT

AIMS: Type 2 Diabetes is intrinsically linked to cardiovascular disease (CVD) via diabetic dyslipidemia, both of which remain global health concerns with annually increasing prevalence. Given the established links between gut microbiome dysbiosis and metabolic diseases, its modulation is an attractive target to ameliorate metabolic imbalances in such patients. There is a need to quantitively summarise, analyse, and describe future directions in this field. METHODS: We conducted a systematic review, meta-analysis, and meta-regression following searches in major scientific databases for clinical trials investigating the effect of pro/pre/synbiotics on lipid profile published until April 2022. Data were pooled using random-effects meta-analysis and reported as mean differences with 95% confidence intervals (CIs). PROSPERO No. CRD42022348525. RESULTS: Data from 47 trial comparisons across 42 studies (n = 2692) revealed that, compared to placebo/control groups, the administration of pro/pre/synbiotics was associated with statistically significant changes in total cholesterol (-9.97 mg/dL [95% CI: -15.08; -4.87], p < 0.0001), low-density lipoprotein (-6.29 mg/dL [95% CI: -9.25; -3.33], p < 0.0001), high-density lipoprotein (+3.21 mg/dL [95% CI: 2.20; 4.22], p < 0.0001), very-low-density lipoprotein (-4.52 mg/dL [95% CI: -6.36; -2.67], p < 0.0001) and triglyceride (-22.93 mg/dL [95% CI: -33.99; -11.87], p < 0.001). These results are influenced by patient characteristics such as age or baseline BMI, and intervention characteristics such as dosage and duration. CONCLUSIONS: Our study shows that adjunct supplementation with a subset of pro/pre/synbiotics ameliorates dyslipidemia in diabetic individuals and has the potential to reduce CVD risk. However, widespread inter-study heterogeneity and the presence of several unknown confounders limit their adoption in clinical practice; future trials should be designed with these in mind.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dyslipidemias , Gastrointestinal Microbiome , Probiotics , Synbiotics , Humans , Diabetes Mellitus, Type 2/complications , Cardiovascular Diseases/complications , Dyslipidemias/complications
3.
Arch Microbiol ; 206(7): 315, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904672

ABSTRACT

Exploring probiotics for their crosstalk with the host microbiome through the fermentation of non-digestible dietary fibers (prebiotics) for their potential metabolic end-products, particularly short-chain fatty acids (SCFAs), is important for understanding the endogenous host-gut microbe interaction. This study was aimed at a systematic comparison of commercially available probiotics to understand their synergistic role with specific prebiotics in SCFAs production both in vitro and in the ex vivo gut microcosm model. Probiotic strains isolated from pharmacy products including Lactobacillus sporogenes (strain not labeled), Lactobacillus rhamnosus GG (ATCC53103), Streptococcus faecalis (T-110 JPC), Bacillus mesentericus (TO-AJPC), Bacillus clausii (SIN) and Saccharomyces boulardii (CNCM I-745) were assessed for their probiotic traits including survival, antibiotic susceptibility, and antibacterial activity against pathogenic strains. Our results showed that the microorganisms under study had strain-specific abilities to persist in human gastrointestinal conditions and varied anti-infective efficacy and antibiotic susceptibility. The probiotic strains displayed variation in the utilization of six different prebiotic substrates for their growth under aerobic and anaerobic conditions. Their prebiotic scores (PS) revealed which were the most suitable prebiotic carbohydrates for the growth of each strain and suggested xylooligosaccharide (XOS) was the poorest utilized among all. HPLC analysis revealed a versatile pattern of SCFAs produced as end-products of prebiotic fermentation by the strains which was influenced by growth conditions. Selected synbiotic (prebiotic and probiotic) combinations showing high PS and high total SCFAs production were tested in an ex vivo human gut microcosm model. Interestingly, significantly higher butyrate and propionate production was found only when synbiotics were applied as against when individual probiotic or prebiotics were applied alone. qRT-PCR analysis with specific primers showed that there was a significant increase in the abundance of lactobacilli and bifidobacteria with synbiotic blends compared to pre-, or probiotics alone. In conclusion, this work presents findings to suggest prebiotic combinations with different well-established probiotic strains that may be useful for developing effective synbiotic blends.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Prebiotics , Probiotics , Synbiotics , Humans , Probiotics/administration & dosage , Fatty Acids, Volatile/metabolism , Anti-Bacterial Agents/pharmacology , Fermentation , Gastrointestinal Tract/microbiology , Lactobacillus/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Saccharomyces boulardii/metabolism
4.
Br J Nutr ; : 1-26, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684660

ABSTRACT

MicroRNAs (miRNAs) have emerged as important regulators of lipid metabolism. Recent studies have suggested synbiotics may modulate miRNA expression and lipid metabolism. This study aimed to investigate the effects of synbiotic supplementation on circulating miR-27a, miR-33a, and lipid parameters in patients with dyslipidemia. Fifty-six eligible participants were randomly allocated to receive either synbiotic or placebo sachets twice a day for 12 weeks. Each synbiotic sachet contained 3×1010 CFU six species of probiotic microorganisms and 5 grams of inulin and fructooligosaccharide (FOS) as prebiotics. Serum miR-27a and miR-33a expression levels, serum lipids, and apolipoproteins, the fecal concentration of short-chain fatty acids (SCFAs), and Firmicutes and Bacteroidetes phyla were assessed before and after the study. Real-time PCR was used to determine the relative expression levels of miRNAs. The results showed synbiotic supplementation significantly downregulated the expression levels of miR-27a and miR-33a compared to the placebo group (p = 0.008 and p = 0.001, respectively). Furthermore, the intervention group exhibited significant improvements in serum high-density lipoprotein (HDL-C), small dense low-density lipoprotein (sdLDL-C), apoA-I, and apoB-100 (p = 0.008, p = 0.006, p = 0.003, p = 0.001, respectively). The results showed a significant negative correlation between miR-33a expression levels with HDL-C, butyrate, propionate, and a significant positive correlation with total cholesterol (TC), low-density lipoprotein (LDL-C), and sdLDL-C in the intervention group. Fecal bacteria and SCFAs were significantly increased in the intervention group. This study provides evidence that synbiotic supplementation can modulate miR-27a and miR-33a expression and improve lipid metabolism in patients with dyslipidemia.

5.
Eur J Nutr ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693449

ABSTRACT

OBJECTIVE: To compare the outcomes associated with the use of probiotics, prebiotics, and synbiotics for the treatment of chronic constipation in adults. METHODS: We searched eight electronic databases from database inception to July 11, 2023, to identify randomized controlled trials (RCTs) that report efficacy and safety for the treatment of chronic constipation. The risk of bias in the included RCTs was evaluated according to the Cochrane tool, and the certainty of the evidence was assessed using the Confidence in Network Meta-Analysis framework. The analysis was conducted using R version 4.3.0. RESULTS: Out of the 37 RCTs, a total of 21 different types of interventions were reported, involving 3,903 patients. This NMA demonstrated that both prebiotics and synbiotics resulted in an increase in frequency of stool movements per week. Compared to placebo, lactulose (Mean difference [MD] = 3.39, 95% Confdence interval [CI] [1.13, 5.65], moderate certainty), mix2 (consisting of Lactulose and Bacillus coagulans) (MD = 3.63, 95% CI [1.37, 5.89], moderate certainty), mix6 (consisting of Lactulose and Bifidobacterium coagulans) (MD = 4.30, 95% CI [1.04, 7.54], low certainty), and mix7 (consisting of Lactulose, Bifidobacterium subtilis, and Enterococcus faecium) (MD = 4.58, 95% CI [1.35, 7.78], moderate certainty) exhibited a significant effect. Notably, mix7 demonstrated the highest probability of being the most effective intervention (94.8%). Furthermore, when compared to L. plantarum, four probiotics and two synbiotics showed significant advantages in the Patient Assessment of Constipation Symptoms (PAC-SYM) score. L. reuteri (MD = -13.74, 95% CI [-22.20, -4.66], very low certainty) exhibited a significant effect in improving the Patient Assessment of Constipation Quality of Life (PAC-QoL) score. In terms of safety, there were no statistically significant differences between the intervention and control groups in all adverse event analyses. CONCLUSIONS: Moderate to very low evidence supports the use of lactulose and synbiotics to increase the number of weekly stool movements in patients, particularly highlighting the significant impact of synbiotics in increasing the number of weekly stool movements in patients with constipation. The use of L. paracasei showed improvements in PAC-SYM scores, while L. reuteri demonstrated enhancements in PAC-QoL scores.

6.
Article in English | MEDLINE | ID: mdl-38902190

ABSTRACT

AIMS: Given the epidemic proportions of type 2 diabetes mellitus (T2DM) globally, it's crucial to comprehensively understand the factors influencing its management. The gut microbiome, known for its influence on various aspects of health, has emerged as a potential regulator of blood pressure in individuals with T2DM. This umbrella review aimed to consolidate the findings of existing meta-analyses investigating the impact of gut microbiome modulation on systolic and diastolic blood pressure in T2DM patients. DATA SYNTHESIS: Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we systematically searched PubMed, Scopus, and Web of Science databases from inception to July 2023. Quality assessment was performed using the AMSTAR2 and GRADE checklists. Statistical analyses were conducted using Comprehensive Meta-Analysis (CMA) version 3. A total of 6 meta-analyses meeting the inclusion criteria were included. The results revealed a significant association between microbial modulation and diastolic blood pressure (SMD: -0.133; 95% CI: -0.219 to -0.048; P = 0.002). However, the effect of gut microbial modulation on systolic blood pressure did not reach statistical significance (SMD: -0.077; 95% CI: -0.162 to 0.009; P = 0.078). CONCLUSION: This study found that modulating the gut microbiome had a statistically significant impact on diastolic blood pressure in individuals with type 2 diabetes mellitus (T2DM). However, no significant effect was observed on systolic blood pressure. While high-quality meta-analyses reported favorable outcomes, caution is warranted due to the low clinical importance, diversity in study populations, and variations in interventions.

7.
BMC Womens Health ; 24(1): 19, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172876

ABSTRACT

BACKGROUND: There are complicated mechanisms that link the disruption of the gut microbiome to the symptoms and complications of polycystic ovary syndrome (PCOS). In this study, an attempt was made to assess the effects of synbiotics on the health-related quality of life (HRQoL) in women with PCOS . METHODS: Fifty-six women with PCOS were enrolled in a triple-blind controlled trial for 12 weeks. They were randomly assigned to receive a daily 2-gram synbiotic sachets (containing Bacillus coagulans (GBI-30), Lactobacillus rhamnosus, Lactobacillus helveticus, and fructooligosaccharide) (n = 28) or placebo (n = 28). To evaluate the impact on the HRQoL, participants were required to fill 26-Item Polycystic Ovary Syndrome Health-Related Quality of Life Questionnaire (PCOSQ-26), 12-Item Short-Form Health Survey (SF-12) and Perceived Stress Scale (PSS-10) pre and post the intervention. RESULTS: Finally, statistical analyses were performed on 52 participants who finished the trial. Synbiotic supplementation improved the scores of emotional (P = 0.044), body hair (P = 0.016), weight (P = 0.033) and infertility domains (P = 0.027) of PCOSQ-26 compared to placebo group. The physical score within SF-12 also had a significant enhancement (P = 0.035). No significant improvement was seen in the PSS-10 score at the end of the trial. CONCLUSION: This study illustrated the advantageous effects of synbiotics on the health-related quality of life in women with PCOS. Further studies are required to confirm our findings. TRIAL REGISTRATION: http://www.irct.ir : IRCT20211108053007N1; date of registration: 14/02/2023.


Subject(s)
Infertility , Polycystic Ovary Syndrome , Synbiotics , Female , Humans , Quality of Life/psychology , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/diagnosis
8.
BMC Womens Health ; 24(1): 80, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297273

ABSTRACT

INTRODUCTION: Preeclampsia affects a significant percentage of pregnancies which is a leading cause of premature birth. Probiotics have the potential to affect inflammatory factors, and oxidative stress, which are linked to the development of preeclampsia. The study aimed to compare the effect of synbiotic and placebo on blood pressure and pregnancy duration as primary outcomes, and other pregnancy outcomes. METHODS: This study comprised 128 pregnant women with mild preeclampsia and gestational ages exceeding 24 weeks who were referred to the high-risk pregnancy clinic. It was a randomized, controlled, phase III, triple-blinded clinical experiment. The intervention and control groups were distributed to the participants at random. Intervention group received one oral synbiotic capsule, and control group received placebo daily until delivery. Based on gestational age at the time of diagnosis, preeclampsia was stratificated as early (< 34 weeks) or late (≥ 34 weeks). Data obtained from questionnaires, and biochemical serum factors were analyzed using SPSS software version 23 software. RESULTS: With the exception of the history of taking vitamin D3, there were no statistically significant variations in socio-demographic variables between the research groups. After the intervention, the means of systolic blood pressure (adjusted mean difference: -13.54, 95% CI: -5.01 to -22.07), and diastolic blood pressure (adjusted mean difference: -10.30, 95% CI: -4.70 to -15.90) were significantly lower in the synbiotic-supplemented group than in the placebo group. Compared to the placebo group, the incidence of severe PE (p < 0.001), proteinuria (p = 0.044), and mean serum creatinine level (p = 0.005) significantly declined in the synbiotic-supplemented group after the intervention. However, our analysis found no significant association for other outcomes. CONCLUSION: Based on our results, synbiotic had beneficial effects on some pregnancy outcomes. Further studies with larger samples are needed to verify the advantages of synbiotic supplementation for high-risk pregnancies, particularly with regards to higher doses, and longer intervention periods. TRIAL REGISTRATION: IRCT20110606006709N20.


Subject(s)
Pre-Eclampsia , Pregnancy Complications , Synbiotics , Female , Humans , Pregnancy , Blood Pressure , Pre-Eclampsia/diagnosis , Pregnancy Outcome
9.
J Fish Biol ; 104(4): 1091-1111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174614

ABSTRACT

Florida pompano (Trachinotus carolinus) are a species of growing interest for commercial aquaculture. Effective health monitoring is crucial to the successful growout of the species, and prophylactic and therapeutic use of chemicals and antibiotics has been the traditional strategy for promoting stock health. However, concerns about antimicrobial resistance, chemical residues in seafood products and the environment, and resultant immunosuppression have prompted the industry to identify alternative management strategies, including supplementation with prebiotics, probiotics, and combinations of both (synbiotics). The objectives of this study are to determine and compare hematological, plasma biochemical, and plasma protein electrophoresis data of synbiotic-supplemented (ß-glucan and Pediococcus acidilactici) and non-supplemented Florida pompano. Reference intervals for blood analytes are provided for both groups and for subgroups (females, males, large, and small fish) where statistically significant results exist. There are no differences between the hematological and plasma biochemistry analytes between the supplemented and control groups, except for blood urea nitrogen and carbon dioxide, indicating a possible effect of synbiotic supplementation on gill function and osmoregulation. Sex-related and size-related differences are observed within each of the control and supplemented groups; however, biometric measurements do not strongly correlate with blood analytes. These data represent baseline hematological and plasma biochemical data in the Florida pompano and indicate the safety of synbiotic supplementation in this commercially important species. This study serves to further the commercialization of Florida pompano by providing blood analyte reference intervals for health monitoring in the aquaculture setting.


Subject(s)
Pediococcus acidilactici , Perciformes , Synbiotics , beta-Glucans , Animals , Synbiotics/analysis , Perciformes/physiology
10.
J Food Sci Technol ; 61(7): 1272-1282, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910933

ABSTRACT

Amorphophallus muelleri BI was included in the Araceae family, which is a type of tuber. It is a tuber with high potential due to its abundant bioactive compounds. Amorphophallus muelleri BI flour (AF) contains a high glucomannan and carbon compounds that serve as nutrients for probiotic bacteria. Although Amorphophallus muelleri BI thrives in Indonesia, its utilization rate in the country remains relatively low and haven't been any studies conducted regarding synbiotic powder from AF. The primary objective of this research is to develop a synergistic beverage enriched with varying concentrations of Amorphophallus muelleri BI as a prebiotic and LA as probiotic (synbiotic). The process starts with culture preparation, synbiotic drink process, synbiotic and microencapsulation, includes the examination of solubility, proximate analysis, calorie content, viability, and shelf life. Results showed that the proximate and solubility had no significant effect. Synbiotic drink powder from AF can be produced using spray dry technology. The highest LA growth was observed when augmenting the AF quantity at a 0.4% concentration, which can be seen from the viability parameter with a value of 7.29 log CFU/g. Samples shelf life at -21 and 3 °C with LA viability critical parameter was determined to be 4 days.

11.
Diabetologia ; 66(11): 2117-2138, 2023 11.
Article in English | MEDLINE | ID: mdl-37584728

ABSTRACT

AIMS/HYPOTHESIS: Modulation of gut microbiota has emerged as a promising strategy to treat or prevent the development of different metabolic diseases, including type 2 diabetes and obesity. Previous data from our group suggest that the strain Pediococcus acidilactici CECT9879 (pA1c) could be an effective probiotic for regulating glucose metabolism. Hence, the objectives of this study were to verify the effectiveness of pA1c on glycaemic regulation in diet-induced obese mice and to evaluate whether the combination of pA1c with other normoglycaemic ingredients, such as chromium picolinate (PC) and oat ß-glucans (BGC), could increase the efficacy of this probiotic on the regulation of glucose and lipid metabolism. METHODS: Caenorhabditis elegans was used as a screening model to describe the potential synbiotic activities, together with the underlying mechanisms of action. In addition, 4-week-old male C57BL/6J mice were fed with a high-fat/high-sucrose diet (HFS) for 6 weeks to induce hyperglycaemia and obesity. Mice were then divided into eight groups (n=12 mice/group) according to dietary supplementation: control-diet group; HFS group; pA1c group (1010 colony-forming units/day); PC; BGC; pA1c+PC+BGC; pA1c+PC; and pA1c+BGC. Supplementations were maintained for 10 weeks. Fasting blood glucose was determined and an IPGTT was performed prior to euthanasia. Fat depots, liver and other organs were weighed, and serum biochemical variables were analysed. Gene expression analyses were conducted by real-time quantitative PCR. Sequencing of the V3-V4 region of the 16S rRNA gene from faecal samples of each group was performed, and differential abundance for family, genera and species was analysed by ALDEx2R package. RESULTS: Supplementation with the synbiotic (pA1c+PC+BGC) counteracted the effect of the high glucose by modulating the insulin-IGF-1 signalling pathway in C. elegans, through the reversal of the glucose nuclear localisation of daf-16. In diet-induced obese mice, all groups supplemented with the probiotic significantly ameliorated glucose tolerance after an IPGTT, demonstrating the glycaemia-regulating effect of pA1c. Further, mice supplemented with pA1c+PC+BGC exhibited lower fasting blood glucose, a reduced proportion of visceral adiposity and a higher proportion of muscle tissue, together with an improvement in the brown adipose tissue in comparison with the HFS group. Besides, the effect of the HFS diet on steatosis and liver damage was normalised by the synbiotic. Gene expression analyses demonstrated that the synbiotic activity was mediated not only by modulation of the insulin-IGF-1 signalling pathway, through the overexpression of GLUT-1 and GLUT-4 mediators, but also by a decreased expression of proinflammatory cytokines such as monocyte chemotactic protein-1. 16S metagenomics demonstrated that the synbiotic combinations allowed an increase in the concentration of P. acidilactici, together with improvements in the intestinal microbiota such as a reduction in Prevotella and an increase in Akkermansia muciniphila. CONCLUSIONS/INTERPRETATION: Our data suggest that the combination of pA1c with PC and BGC could be a potential synbiotic for blood glucose regulation and may help to fight insulin resistance, diabetes and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Pediococcus acidilactici , Synbiotics , Animals , Mice , Male , Caenorhabditis elegans/metabolism , Pediococcus acidilactici/metabolism , Blood Glucose/metabolism , Mice, Obese , RNA, Ribosomal, 16S , Insulin-Like Growth Factor I , Mice, Inbred C57BL , Obesity/metabolism , Diet, High-Fat/adverse effects , Insulin , Glucose
12.
Cell Immunol ; 393-394: 104786, 2023.
Article in English | MEDLINE | ID: mdl-37984277

ABSTRACT

Given the reported role of gut-microbiota in asthma pathogenesis, the present work was carried to evaluate immunomodulatory action of newly isolated lactic acid producing bacterial strains Bifidobacterium breve Bif11 and Lactiplantibacillus plantarum LAB31 against asthma using ovalbumin (OVA) based mouse model. Our results show that both strains modulate Th2 immune response potentially through production of short chain fatty acids (SCFAs), resulting in suppression of OVA-induced airway inflammation. Furthermore, synbiotic comprising of both strains and prebiotic, Isomaltooligosaccharide exhibited superior potential in amelioration of OVA-induced airway inflammation through improved modulation of Th2 immune response. Further, synbiotic protects against OVA-induced mucus hyper-production and airway-hyperresponsiveness. Such protection was associated with normalization of gut microbiome and enhanced production of SCFAs in cecum which correlates closely with population of T-regulatory cells in spleen. Overall, our novel synbiotic possesses the ability to fine-tune the immune response for providing protection against allergic asthma.


Subject(s)
Asthma , Synbiotics , Animals , Mice , Ovalbumin , Lactic Acid , Immunoglobulin E , Inflammation/pathology , Immunity , Disease Models, Animal , Mice, Inbred BALB C , Lung , Cytokines , Bronchoalveolar Lavage Fluid
13.
Toxicol Appl Pharmacol ; 459: 116360, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36572227

ABSTRACT

BACKGROUND: Perfluorooctanoic acid (PFOA(is used in several industrial applications, and serves as a surfactant. It is persistent in the environment and is resistant to typical environmental degradation processes. Exposure to this contaminant has been shown to reduce the normal gastrointestinal flora, especially Lactobacillus and Bifidobacterium. Since exposure to this contaminant still occurs and it has been suggested that gut microbiota imbalance might accelerate the progression of liver disorders, we aimed to study the effect of synbiotics pretreatment on PFOA-induced hepatotoxicity. METHOD AND MATERIALS: Herein, C57BL/6 J mice were administered 1, 5, 10, and 20 mg PFOA per kg body weight orally by gavage once daily up to 28 days. Another group was pretreated with synbiotic 4 h before receiving 10 mg PFOA/kg. Also, a control group received 2% Tween 80 orally as a vehicle of PFOA during the study. Plasma ALT, AST, TNF-α, HGF, IL-6, and IFN-γ were measured every week. In addition, a liver histopathological assessment was performed at the end of exposure studies. RESULTS: It was observed that exposure to PFOA can trigger inflammatory markers such as TNF-α, HGF, IL-6, and IFN-γ as well as hepatic enzymes AST and ALT in comparison with the control group. Synbiotic pretreatment prevented or statistically significant reduced the release of the inflammatory markers and the liver enzymes compared to PFOA only treated group. CONCLUSION: It could be inferred that having intact gut flora or even using synbiotic complements containing Lactobacillus, Bifidobacterium, and Streptococcus plus fructooligosaccharides as prebiotic is an appropriate strategy to reduce the negative effects of PFOA exposure.


Subject(s)
Liver Diseases , Synbiotics , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Liver , Liver Diseases/metabolism , Bifidobacterium
14.
Arch Microbiol ; 205(7): 265, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37322321

ABSTRACT

To date, the coffee industry has the second highest market value in the world and consumer behavior has transitioned from drinking coffee just for its caffeine content to reduce sleepiness into an overall experience. Instant cold brew coffee in powder form can preserve the taste of coffee well; moreover, it is easy to transport. Several consumers have increasing interests in implementing lactic acid bacteria in healthy food due to their growing awareness of the probiotic's role. Several scholars have presented stress adaptation characteristics of single probiotic strains; however, comparisons of the stress-tolerant capacities of different probiotic strains are incomplete. Five lactic acid strains are tested for adaptation under four sublethal conditions. Lactobacillus casei is the most resilient probiotic in terms of heat and cold adaptation, while Lactobacillus acidophilus is more tolerant to low acid and bile salt; Then, these probiotics are subjected to a stress challenge that stimulates drying temperature, including a heat and cold stress challenge. The results show that acid adaptation can improve Lactobacillus acidophilus TISTR 1338 tolerance to harsh drying temperatures. In addition, encapsulation using prebiotic extracts from rice bran, with pectin and resistant starch combined through crosslinking and treated by freeze-drying, provides the highest encapsulation efficiency. In summary, acid-adapted L. acidophilus TISTR 1388 at the sublethal level can be applied to high and low temperature processing techniques. Additionally, the amount of viable probiotic after in vitro digestion remains at 5 log CFU/g, which is suitable for application in the production of synbiotic cold brew coffee.


Subject(s)
Oryza , Probiotics , Synbiotics , Coffee , Lactobacillus acidophilus
15.
Pharmacol Res ; 187: 106614, 2023 01.
Article in English | MEDLINE | ID: mdl-36538981

ABSTRACT

Recent studies have demonstrated the effect of probiotics, prebiotics, and synbiotics on adiponectin and leptin levels; however, those findings remain contested. The present study aimed to explore the impact of probiotics/synbiotics on appetite-regulating hormones and the desire to eat. METHODS: A systematic review was conducted by searching the Medline (PubMed) and Scopus databases from inception to December 2021, using relevant keywords and MeSH terms, and appropriate randomized controlled trials (RCTs) were extracted. The standardized mean differences (SMD) and 95% confidence intervals (95%CIs) were calculated as part of the meta-analysis using a random-effect model to determine the mean effect sizes. Analysis of Galbraith plots and the Cochrane Chi-squared test were conducted to examine heterogeneity. RESULTS: Meta-analysis of data from a total of 26 RCTs (n = 1536) showed a significant decrease in serum/plasma leptin concentration following probiotic/synbiotic supplementation (SMD: -0.38, 95%CI= -0.638, -0.124); P-value= 0.004; I2= 69.4%; P heterogeneity < 0.001). The leptin level decrease from probiotic/synbiotic supplementation was higher in patients with NAFLD than those with overweight/obesity or type 2 diabetes mellitus/ metabolic syndrome/ prediabetes. Probiotic/synbiotic supplementation was associated with a trending increase in adiponectin levels, stronger in patients with type 2 diabetes mellitus, metabolic syndrome, and prediabetes (SMD: 0.25, 95%CI= 0.04, 0.46) µg/mL; P-value= 0.021; I2 = 16.8%; P heterogeneity= 0.30). Additionally, supplementation with probiotic/synbiotic was linked to a slight increase in desire to eat (SMD: 0.34, 95%CI= 0.03, 0.66) P-value = 0.030; I2 = 39.4%; P heterogeneity= 0.16). CONCLUSION: Our meta-analysis indicates a favorable impact of probiotic/synbiotic supplementation on regulating leptin and adiponectin secretion.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , Prediabetic State , Probiotics , Synbiotics , Humans , Leptin , Adiponectin , Appetite , Probiotics/therapeutic use
16.
Crit Rev Food Sci Nutr ; 63(4): 522-538, 2023.
Article in English | MEDLINE | ID: mdl-34287081

ABSTRACT

This meta-analysis of randomized controlled trials (RCTs) was performed to summarize the effects of probiotics, prebiotics, and synbiotics on insulin resistance (IR), lipid profiles, anthropometric indices, and C-reactive protein (CRP) level for polycystic ovary syndrome (PCOS). We searched 8 databases from their inception until 1st October, 2020. The effect sizes were expressed as standardized mean difference (SMD) with 95% confidence intervals (95% CI). Subgroup analyses were undertaken for further identification of effects of probiotics, prebiotics, and synbiotics, based on the following aspects: (1) type of intervention (probiotics, prebiotics, or synbiotics); (2) study duration (≥ 12 weeks or < 12 weeks); (3) number of probiotic strains (multi strains or single strain); (4) probiotic dose (≥ 2 × 108 colony-forming units [CFU] or < 2 × 108 CFU). A total of 17 eligible RCTs with 1049 participants were included. Results showed that probiotic, prebiotic, and synbiotic intake decreased fasting plasma glucose (SMD, -1.35; 95% CI, -2.22 to -0.49; p = 0.002), fasting insulin (SMD, -0.68; 95% CI, -1.08 to -0.27; p = 0.001), homeostatic model of assessment for IR (SMD, -0.73; 95% CI, -1.15 to -0.31; p = 0.001), triglycerides (SMD, -0.85; 95% CI, -1.59 to -0.11; p = 0.024), total cholesterol (SMD, -1.09; 95% CI, -1.98 to -0.21; p = 0.015), low-density lipoprotein cholesterol (SMD, -0.84; 95% CI, -1.64 to -0.03; p = 0.041), very-low-density lipoprotein cholesterol (SMD, -0.44; 95% CI, -0.70 to -0.18; p = 0.001), and increased quantitative insulin sensitivity check index (SMD, 2.00; 95% CI, - 0.79 to 3.22; p = 0.001). However, probiotic, prebiotic, and synbiotic supplements did not affect anthropometric indices, high-density lipoprotein cholesterol, and CRP levels. Subgroup analysis showed that probiotic or prebiotic might be the optimal choice for ameliorating IR or lipid profiles, respectively. Additionally, the effect was positively related to courses and therapeutical dose. Overall, the meta-analysis demonstrates that probiotic, prebiotic, or synbiotic administration is an effective and safe intervention for modifying IR and lipid profiles.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Probiotics , Synbiotics , Female , Humans , Prebiotics , Polycystic Ovary Syndrome/metabolism , Probiotics/therapeutic use , Triglycerides , Cholesterol, HDL
17.
Crit Rev Food Sci Nutr ; 63(22): 5620-5642, 2023.
Article in English | MEDLINE | ID: mdl-37667870

ABSTRACT

The primary aim of this review was to systematically evaluate the literature regarding the effect of pre-, pro-, or synbiotic supplementation in infant formula on the gastrointestinal microbiota. The Cochrane methodology for systematic reviews of randomized controlled trials (RCTs) was employed. Five databases were searched and 32 RCTs (2010-2021) were identified for inclusion: 20 prebiotic, 6 probiotic, and 6 synbiotic. The methods utilized to evaluate gastrointestinal microbiota varied across studies and included colony plating, fluorescence in situ hybridization, quantitative real-time polymerase chain reaction, or tagged sequencing of the 16S rRNA gene. Fecal Bifidobacterium levels increased with supplementation of prebiotics and synbiotics but not with probiotics alone. Probiotic and synbiotic supplementation generally increased fecal levels of the bacterial strain supplemented in the formula. Across all pre-, pro-, and synbiotic-supplemented formulas, results were inconsistent regarding fecal Clostridium levels. Fecal pH was lower with some prebiotic and synbiotic supplementation; however, no difference was seen with probiotics. Softer stools were often reported in infants supplemented with pre- and synbiotics, yet results were inconsistent for probiotic-supplemented formula. Limited evidence demonstrates that pre- and synbiotic supplementation increases fecal Bifidobacterium levels. Future studies utilizing comprehensive methodologies and additional studies in probiotics and synbiotics are warranted.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Synbiotics , Infant , Humans , Prebiotics , Systematic Reviews as Topic , Bifidobacterium
18.
Crit Rev Food Sci Nutr ; : 1-12, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889505

ABSTRACT

Although bread is the main consumed staple food worldwide containing essential micro- and macronutrients, incorporation of probiotics (PRO) into this nondairy product has been less documented. Due to the mechanical and thermal stresses during bread-making process, production of PRO bread (PRO-BR) is dependent on development of emerging strategies like edible coating, encapsulation, three-dimensional printing, and application of thermophilic PRO strains. In the present study, novel technological and formulation aspects of PRO-BR, as well as critical conditions for obtaining products with guaranteed PRO potential have been reviewed. The biological functionality of these products, their scale up, marketing and commercial success factors are also highlighted. Production of functional PRO-BR containing bioactive compounds, phytochemicals and prebiotic components as an emerging field also affects dough rheology and textural features, sensory attributes and shelf-life of the final product. Recent data has revealed the effect of PRO on acrylamide content and staling rate of the produced bread. Furthermore, there are clinical evidences confirming the effects of PRO and synbiotic breads on reduction of triacylglycerol, low-density lipoprotein, insulin level and malondialdehyde, along with the increase of nitric oxide in the patients with type II diabetes.

19.
Fish Shellfish Immunol ; 135: 108652, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863498

ABSTRACT

The present study aimed at determining the effects of Lactobacillus helveticus (LH), Gum Arabic (GA; natural prebiotic), and their combination as synbiotic on growth performance, digestive enzymes activity, gut microbiota, innate immunity status, antioxidant capacity, and disease resistance against Aeromonas hydrophyla in common carp, Cyprinus carpio for 8 weeks. For this, 735 common carp juveniles (Mean ± standard deviation; 22.51 ± 0.40 g) were fed with 7 different diets including basal diet (C), LH1 (1 × 107 CFU/g), LH2 (1 × 109 CFU/g), GA1 (0.5%), GA2 (1%), LH1+GA1 (1 × 107 CFU/g + 0.5%), and LH2+GA2 (1 × 109 CFU/g + 1%) for 8 weeks. Dietary supplementation with GA and/or LH significantly increased growth performance, WBC, serum total immunoglobulin, superoxide dismutase and catalase activities, skin mucus lysozyme and total immunoglobulin and intestinal lactic acid bacteria. Whereas there were significant improvements in various parameters tested in different treatments, the highest improvement in growth performance, WBC, monocyte/neutrophil percentages, serum lysozyme, alternative complement, glutathione peroxidase and malondialdehyde, skin mucosal alkaline phosphatase, protease, and immunoglobulin, intestinal total bacterial count, protease and amylase activities were observed in the synbiotic treatments, particularly LH1+GA1. After an experimental infection with Aeromonas hydrophila, all experimental treatments exhibited significantly higher survival, compared to the control treatment. The highest survival was related to the synbiotic (particularly LH1+GA1), followed by prebiotic, and probiotic treatments. Overall, synbiotic containing 1 × 107 CFU/g LH + 0.5% GA can improve growth rate and feed efficiency in common carp. Moreover, the synbiotic can improve the antioxidant/innate immune systems and dominate lactic acid bacteria in the fish intestine that may be the reasons of the highest resistance against A. hydrophila infection.


Subject(s)
Carps , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Lactobacillus helveticus , Synbiotics , Animals , Disease Resistance , Antioxidants/pharmacology , Dietary Supplements/analysis , Muramidase/pharmacology , Gum Arabic/pharmacology , Diet/veterinary , Immunity, Innate , Prebiotics , Immunoglobulins , Peptide Hydrolases , Animal Feed/analysis , Gram-Negative Bacterial Infections/veterinary
20.
Eur J Nutr ; 62(2): 543-561, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36239789

ABSTRACT

PURPOSE: Probiotics or synbiotics consumption have been suggested to reduce the risk of cardiovascular disease (CVD) through a decline in inflammation and oxidative stress, however, the results from studies are conflicting. This study filled this knowledge gap by evaluating randomized controlled trials (RCTs) investigating probiotics or synbiotics intake on adipokines, inflammation, and oxidative stress in patients with prediabetes and type-2 diabetes mellitus (T2DM). METHODS: We systematically did search up to March 2022 in PubMed/Medline, Scopus, ISI Web of Science, and Cochrane library. A random-effect model was applied to estimate the weighted mean difference (WMD) and 95% confidence interval (95% CI) for each outcome. RESULTS: A total of 32 RCTs were included in the meta-analysis. This intervention led to a significant decrease in levels of C-reactive protein (CRP) (WMD - 0.62 mg/l; 95% CI - 0.80, - 0.44; p < 0.001), tumor necrosis factor-α (TNF-α) (WMD - 0.27 pg/ml; 95% CI - 0.44, - 0.10; p = 0.002) and malondialdehyde (MDA) (WMD - 0.51 µmol/l; 95% CI - 0.73, - 0.30; p < 0.001), and also a significant increase in levels of glutathione (GSH) (WMD 69.80 µmol/l; 95% CI 33.65, 105.95; p < 0.001), total antioxidant capacity (TAC) (WMD 73.59 mmol/l; 95% CI 33.24, 113.95; p < 0.001) and nitric oxide (NO) (WMD 7.49 µmol/l; 95% CI 3.12, 11.86; p = 0.001), without significant alterations in interleukin-6 (IL-6) and adipokines levels. CONCLUSION: A consumption of probiotics or synbiotics could be a useful intervention to improve cardiometabolic outcomes through a reduced inflammation and oxidative stress in patients with prediabetes and T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Probiotics , Synbiotics , Humans , Adipokines , Adiponectin , Dietary Supplements , Glutathione , Inflammation , Leptin , Oxidative Stress , Probiotics/pharmacology , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL