Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605320

ABSTRACT

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Subject(s)
Fertilizers , Zea mays , Nitrogen/analysis , Carbon Dioxide , Agriculture , Soil
2.
Ecotoxicol Environ Saf ; 267: 115669, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37944464

ABSTRACT

Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.


Subject(s)
Insecticides , Animals , Spodoptera/physiology , Insecticides/pharmacology , Nicotiana/metabolism , Benzoxazines , Larva/metabolism , Gene Expression , Insecticide Resistance/genetics
3.
Molecules ; 28(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050012

ABSTRACT

As resistance to the limited number of insecticides available for medical and veterinary pests becomes more widespread, there is an urgent need for new insecticides and synergists on the market. To address this need, we conducted a study to assess the toxicity of three monoterpenoids-carvone, menthone, and fenchone-in comparison to permethrin and methomyl against adults of two common pests: the yellow fever mosquito (Aedes aegypti) and the house fly (Musca domestica). We also examined the potential for these monoterpenoids to enhance the effectiveness of permethrin and methomyl when used together. Finally, we evaluated the ability of each monoterpenoid to inhibit acetylcholinesterase, comparing them to methomyl. While all three monoterpenoids performed relatively poorly as topical insecticides (LD50 > 4000 ng/mg on M. domestica; >6000 ng/mg on Ae. aegypti), they synergized both permethrin and methomyl as well as or better than piperonyl butoxide (PBO). Carvone and menthone yielded synergistic co-toxicity factors (23 and 29, respectively), which were each higher than PBO at 24 h. Currently, the mechanism of action is unknown. During preliminary testing, symptoms of acetylcholinesterase inhibition were identified, prompting further testing. Acetylcholinesterase inhibition did not appear to explain the toxic or synergistic effects of the three monoterpenoids, with IC50 values greater than 1 mM for all, compared to the 2.5 and 1.7 µM for methomyl on Aedes aegypti and Musca domestica, respectively. This study provides valuable monoterpenoid toxicity and synergism data on two pestiferous insects and highlights the potential for these chemistries in future pest control formulations.


Subject(s)
Aedes , Houseflies , Insecticides , Muscidae , Yellow Fever , Animals , Insecticides/pharmacology , Permethrin/pharmacology , Acetylcholinesterase/pharmacology , Methomyl , Monoterpenes/pharmacology
4.
Ecotoxicology ; 30(4): 552-559, 2021 May.
Article in English | MEDLINE | ID: mdl-33797019

ABSTRACT

The house fly, Musca domestica L. is an important mechanical vector of different pathogens of medical and veterinary importance. It is an organism well-known for its ability to develop insecticide resistance. In the current study, we investigated the genetic basis and mechanism of chlorantraniliprole resistance in a field strain of house fly by selecting it artificially in the laboratory with a commercial formulation of chlorantraniliprole (CTPR-SEL). After seven generations of consecutive selection with chlorantraniliprole, CTPR-SEL strain developed a 644-fold resistance compared with the Susceptible strain and a 3-fold resistance compared with the field strain. Reciprocal crossing between the CTPR-SEL and Susceptible homozygous strains revealed an autosomal and incomplete dominant mode of resistance to chlorantraniliprole. A direct test using a monogenic inheritance model based on chi-square analysis revealed that the resistance was governed by more than one gene. Bioassays with synergists indicated that esterases might be involved in the resistance of house fly to chlorantraniliprole. These findings may be helpful to the development of an improved strategy for chlorantraniliprole resistance management in house fly.


Subject(s)
Houseflies , Insecticides , Muscidae , Animals , Houseflies/genetics , Insecticide Resistance/genetics , Insecticides/toxicity , ortho-Aminobenzoates
5.
Ecotoxicol Environ Saf ; 169: 928-936, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30597793

ABSTRACT

In this work, we firstly tested five spatial repellent pyrethroids, meperfluthrin, dimefluthrin, heptafluthrin, metofluthrin and transfluthrin, to determine the susceptibility of pyrethroids to field strains of Culex quinquefasciatus using adult topical bioassay. The results showed that though field strains exhibited the highest resistance to dimefluthrin among the selected five pyrethroids, it still can be considered low resistance in the scale of Cui et al. (2006; 2007). Then, the aim of this study was to optimise the synergistic efficacy of essential oils combined with dimefluthrin and explore the major contribution composition of eucalyptus oil, basil oil and cinnamon oil as natural synergist of dimefluthrin against the field populations of C. quinquefasciatus. GC-MS analysis showed 1,8-cineole, eugenol and trans-cinnamaldehyde were the main chemical components of eucalyptus oil, basil oil and cinnamon oil, respectively. The results of bioactivity showed that eucalyptus oil and 1,8-cineole have highly fumigant knock-down activity to the adults, showing KT50 (the median knockdown time) of 5.76 and 4.27 min at the concentration of 24.2 µL/L; basil oil and eugenol, cinnamon oil and trans-cinnamaldehyde have highly fumigant toxicity to the adults, showing LD50 of 1.00 and 0.79, 1.26 and 1.03 µL/L, respectively. Three effective main essential oil components were selected to prepare binary mixtures, which combined with dimefluthrin against the field population of Culex quinquefasciatus. 1,8-cineole+eugenol (9:1, w/w), 1,8-cineole+trans-cinnamaldehyde (1:1, w/w) and trans-cinnamaldehyde+eugenol (9:1, w/w) combined with dimefluthrin (10:1, w/w) were the most synergistic interaction, showed SR (synergistic ratio) values of 1.2471, 1.5709 and 1.1969; KT50 of 11.68, 9.51 and 10.67 min respectively, by quadrate box method. In addition, to validate the stable synergistic interaction of 1,8-cineole+trans-cinnamaldehyde (1:1, w/w) combined with dimefluthrin (10:1, w/w), the SR values were about 1.3, and KT50 values were 38.72-50.26 min by simulated house method. Overall, our results pointed out the promising potential of these essential oils to increase the efficacy of dimefluthrin. It might be expected that these essential oils could be developed to a useful botanical synergist of dimefluthrin for the control of the field populations of C. quinquefasciatus.


Subject(s)
Culex/drug effects , Insecticide Resistance , Insecticides/pharmacology , Oils, Volatile/pharmacology , Pesticide Synergists/pharmacology , Pyrethrins/pharmacology , Animals , Fumigation , Insecticides/chemistry , Oils, Volatile/chemistry , Pyrethrins/chemistry
6.
Pestic Biochem Physiol ; 161: 77-85, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31685200

ABSTRACT

The incidence of mosquito-borne disease poses a significant threat to human and animal health throughout the world, with effective chemical control interventions limited by widespread insecticide resistance. Recent evidence suggests that gut bacteria of mosquitoes, known to be essential in nutritional homeostasis and pathogen defense, may also play a significant role in facilitating insecticide resistance. This study investigated the extent to which bacteria contribute to the general esterase and cytochrome P450 monooxygenase (P450)-mediated detoxification of the insecticides propoxur and naled, as well as the insecticidal activity of these chemistries to the yellow fever mosquito, Aedes aegypti. Experiments conducted using insecticide synergists that reduce general esterase and P450 activity demonstrate a role for both groups of enzymes in the metabolic detoxification of propoxur and naled. Furthermore, reduction of bacteria in mosquito larvae using broad-spectrum antibiotics was found to decrease the metabolic detoxification of propoxur and naled, suggesting that the bacteria themselves may be contributing to the in vivo metabolic detoxification of these insecticides. This was supported by in vitro assays using culturable gut bacteria isolated from mosquito larvae which demonstrated that the bacteria were capable of reducing insecticide toxicity. More work is needed, however, to fully elucidate the contribution of bacteria in Ae. aegypti larvae to the metabolic detoxification of insecticides.


Subject(s)
Aedes/drug effects , Bacteria/metabolism , Insecticides/pharmacology , Naled/pharmacology , Propoxur/pharmacology , Acetylcholinesterase/metabolism , Aedes/embryology , Aedes/microbiology , Aedes/virology , Animals , Anti-Bacterial Agents/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Inactivation, Metabolic , Larva/drug effects , Larva/microbiology
7.
Ecotoxicology ; 27(10): 1368-1378, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30343485

ABSTRACT

The possible involvement of the epiphytic yeasts Rhodotorula glutinis and Rhodotorula rubra in the biodegradation of the insecticide chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol (TCP), in pure cultures and in plant surfaces (tomato fruits) was investigated. Higher biodegradation rates were observed as the concentration of chlorpyrifos and the inoculum of the microorganisms were increased, while the yeasts proved to be more active at 25 and 15 °C. The presence of glucose in the mineral nutrient medium, as an extra source of carbon, delayed the biodegradation by Rhodotorula glutinis, while Rhodotorula rubra proved to be more active. The detection and quantification of the parent compound and TCP was successfully achieved using a LC/MS/MS chromatographic system. The in vitro enzymatic assays applied suggested that esterases may be involved in the biodegradation of chlorpyrifos, a fact that was further enhanced after the addition of the synergists triphenyl phosphate, diethyl maleate and piperonyl butoxide in the biodegradation trials. The decrease of chlorpyrifos residues on tomato fruits confirmed the corresponding on pure cultures, resulting in the suggestion that the yeasts R. glutinis and R. rubra can possibly be used successfully for the removal or detoxification of chlorpyrifos residues on tomatoes.


Subject(s)
Biodegradation, Environmental , Chlorpyrifos/metabolism , Insecticides/metabolism , Pyridones/metabolism , Rhodotorula/metabolism
8.
Malar J ; 16(1): 299, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743278

ABSTRACT

BACKGROUND: Malaria is common in hilly, forested areas along national borders in Southeast Asia. Insecticide resistance in malaria vectors has been detected in a few countries in the Greater Mekong sub-region (GMS), representing a threat to malaria control and prevention. This study aims to determine the insecticide resistance status of Anopheles mosquitoes in Ubon Ratchathani province, northeastern Thailand, where increasing number of malaria cases were reported recently. METHODS: Mosquitoes were collected in 2013-2015 using human landing and cattle bait collections in six sites during both the rainy and dry seasons. Mosquitoes were first morphologically identified to species and their susceptibility status to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%) investigated, according to WHO guidelines. Bioassays with the synergists PBO and DEF were carried out to address the role of detoxifying enzymes in insecticide resistance. DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to detect knock-down resistance (kdr) substitutions at position 1014 in resistant species. RESULTS: Due to low vector abundance, complete bioassays (n ≥ 100 mosquitoes) were only achieved for Anopheles hyrcanus s.l., which was resistant to all insecticides tested (mortality ranged from 45 to 87%). Suspected resistance to DDT was found in Anopheles barbirostris s.l. (mortality 69%), but it was susceptible to deltamethrin (mortality 97-100%) and permethrin (mortality 100%). Although insufficient number of primary vectors were collected, results showed that Anopheles dirus s.l. and Anopheles maculatus s.l. were susceptible to deltamethrin (mortality 100%). Anopheles nivipes and Anopheles philippinensis were susceptible to all three insecticides. PBO significantly increased mortality to deltamethrin and permethrin in pyrethroid-resistant An. hyrcanus s.l. None of the sequenced specimens presented the L1014F or L1014S mutation. DISCUSSION: This study shows that insecticide resistance is present in potential malaria vectors in northeastern Thailand. The absence of kdr mutations in all Anopheles species tested suggests that metabolic resistance is the main mechanism of pyrethroid resistance. This study provides new findings about insecticide susceptibility status of potential malaria vectors in northeastern Thailand that are deemed important to guide malaria vector control.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticides/pharmacology , Animals , Malaria/prevention & control , Mosquito Vectors/drug effects , Thailand
9.
Scand J Med Sci Sports ; 27(2): 177-187, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26773332

ABSTRACT

Connective tissue formation following muscle injury and remedial surgery may involve changes in the stiffness and configuration of the connective tissues linking adjacent muscles. We investigated changes in mechanical interaction of muscles by implanting either a tissue-integrating mesh (n = 8) or an adhesion barrier (n = 8) to respectively increase or decrease the intermuscular connectivity between soleus muscle (SO) and the lateral gastrocnemius and plantaris complex (LG+PL) of the rat. As a measure of mechanical interaction, changes in SO tendon forces and proximal-distal LG+PL force differences in response to lengthening LG+PL proximally were assessed 1 and 2 weeks post-surgery. The extent of mechanical interaction was doubled 1 week post-implantation of the tissue-integrating mesh compared to an unaffected compartment (n = 8), and was more than four times higher 2 weeks post-surgery. This was found only for maximally activated muscles, but not when passive. Implanting the adhesion barrier did not result in a reduction of the mechanical interaction between these muscles. Our findings indicate that the ratio of force transmitted via myofascial, rather than myotendinous pathways, can increase substantially when the connectivity between muscles is enhanced. This improves our understanding of the consequences of connective tissue formation at the muscle boundary on skeletal muscle function.


Subject(s)
Connective Tissue/physiopathology , Fascia/physiopathology , Lower Extremity , Muscle, Skeletal/physiopathology , Tendons/physiopathology , Animals , Biomechanical Phenomena , Connective Tissue/physiology , Electric Stimulation , Fascia/physiology , Male , Muscle, Skeletal/physiology , Rats , Rats, Wistar , Surgical Mesh , Tendons/physiology , Tibial Nerve
10.
Molecules ; 22(3)2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28273835

ABSTRACT

For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC) combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...].


Subject(s)
Millettia/chemistry , Phytochemicals/analysis , Plant Extracts/chemistry , Countercurrent Distribution , Drug Synergism
11.
Muscle Nerve ; 51(6): 890-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25256569

ABSTRACT

INTRODUCTION: Dynamic movements require synergistic involvement of numerous muscles, whereby different muscular and task demands could alter the ratio of this synergistic activation. METHODS: Participants completed isometric, isotonic, isokinetic, and squat jump (SJ) tasks. Mean RMS EMG was collected from the medial and lateral gastrocnemius (MG, LG) and soleus (SOL), then pooled, and each muscle's activation was expressed as a percentage of the pooled activation. RESULTS: The MG contributed 9-14% more to total muscle activation in isometric and isotonic tasks versus the SJ task. The SOL contributed 8% more to the SJ task compared with the isometric and isotonic tasks. Across all tasks, MG activation was 4.0% greater than SOL and 10.5% greater than LG. SOL activation was 6.5% greater in all tasks compared with LG. CONCLUSIONS: Task and intensity influences the ratio of activation in the triceps surae.


Subject(s)
Isometric Contraction/physiology , Movement/physiology , Muscle, Skeletal/physiology , Adult , Electromyography , Female , Humans , Male , Reproducibility of Results , Young Adult
12.
Med Vet Entomol ; 29(1): 51-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25537754

ABSTRACT

Anopheles gambiae s.l. (Diptera: Culicidae) in Muleba, Tanzania has developed high levels of resistance to most insecticides currently advocated for malaria control. The kdr mutation has almost reached fixation in An. gambiae s.s. in Muleba. This change has the potential to jeopardize malaria control interventions carried out in the region. Trends in insecticide resistance were monitored in two intervention villages using World Health Organization (WHO) susceptibility test kits. Additional mechanisms contributing to observed phenotypic resistance were investigated using Centers for Disease Control (CDC) bottle bioassays with piperonylbutoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) synergists. Resistance genotyping for kdr and Ace-1 alleles was conducted using quantitative polymerase chain reaction (qPCR). In both study villages, high phenotypic resistance to several pyrethroids and DDT was observed, with mortality in the range of 12-23%. There was a sharp decrease in mortality in An. gambiae s.l. exposed to bendiocarb (carbamate) from 84% in November 2011 to 31% in December 2012 after two rounds of bendiocarb-based indoor residual spraying (IRS). Anopheles gambiae s.l. remained susceptible to pirimiphos-methyl (organophosphate). Bendiocarb-based IRS did not lead to the reversion of pyrethroid resistance. There was no evidence for selection for Ace-1 resistance alleles. The need to investigate the operational impact of the observed resistance selection on the effectiveness of longlasting insecticidal nets and IRS for malaria control is urgent.


Subject(s)
Anopheles/genetics , DDT/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Nets , Pyrethrins/pharmacology , Animals , Anopheles/drug effects , Anopheles/metabolism , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Seasons , Tanzania
13.
Toxicol Ind Health ; 31(4): 289-97, 2015 Apr.
Article in English | MEDLINE | ID: mdl-23299193

ABSTRACT

In this study, 70 Wistar rats were randomly divided into seven equal groups (six experimental and one control), which consisted of animals belonging to both sexes. Different combinations of insecticides were administered daily to the experimental groups (group 1: cypermethrin + piperonyl butoxide (PBO); group 2: alphacypermethrin + PBO; group 3: deltamethrin + PBO; group 4: cypermethrin + PBO + tetramethrin; group 5: alphacypermethrin + PBO + tetramethrin; and group 6: deltamethrin + PBO + tetramethrin) for 28 days. During the study period, mortality and serious clinical findings were not observed in any animal. However, feed consumptions decreased in groups 1 and 3 (p < 0.05). Red blood cells, white blood cells, and hemoglobin levels, especially in cypermethrin and alphacypermethrin groups (groups 1, 2, and 4), were found to be higher than the control group (p < 0.05). Furthermore, biochemical changes related to liver, kidney functions, and protein metabolism occurred in males of almost all the groups. Relative liver and kidney weights of the male animals increased in the cypermethrin and alphacypermethrin groups (p < 0.05). The most common finding observed during the histopathological examination of all the experimental groups was centrilobular degeneration in the liver. It was concluded that although clinical symptoms were not observed, synthetic pyrethroid, synergist, and knockdown agent combinations might cause serious abnormalities when administered in certain doses in mammalians.


Subject(s)
Pesticides/toxicity , Piperonyl Butoxide/toxicity , Pyrethrins/toxicity , Administration, Oral , Animals , Blood Cells/drug effects , Female , Liver/drug effects , Liver/pathology , Male , Organ Size/drug effects , Piperonyl Butoxide/administration & dosage , Pyrethrins/administration & dosage , Rats , Rats, Wistar , Toxicity Tests, Subacute
14.
J Neurophysiol ; 112(6): 1439-46, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24944216

ABSTRACT

In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion.


Subject(s)
Conditioning, Operant , H-Reflex , Locomotion , Muscle, Skeletal/physiology , Adaptation, Physiological , Adult , Female , Humans , Male , Middle Aged , Muscle, Skeletal/innervation , Time Factors
15.
J Invertebr Pathol ; 123: 1-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218400

ABSTRACT

The lesser mealworm, Alphitobius diaperinus, is a serious cosmopolitan pest of commercial poultry facilities because of its involvement in structural damage to poultry houses, reduction in feed conversion efficiency, and transfer of avian and human pathogens. Cry3Aa, Cry3Bb, and Cry8Ca insecticidal proteins of Bacillus thuringiensis are used to control coleopteran larvae. Cadherins localized in the midgut epithelium function as receptors for Cry toxins in lepidopteran, coleopteran, and dipteran insects. Previously, we demonstrated that the truncated cadherin (DvCad1) from Diabrotica virgifera virgifera, which consists of the C-terminal cadherin repeats (CR) 8-10 and expressed in Escherichia coli, enhanced Cry3Aa and Cry3Bb toxicity against several coleopteran species. Here we report that the DvCad1-CR8-10 enhances Cry3Aa, Cry3Bb, and Cry8Ca toxicity to lesser mealworm. Previously, by an enzyme linked immunosorbent microplate assay, we demonstrated that the DvCad1-CR8-10 binds activated-Cry3Aa (11.8 nM), -Cry3Bb (1.4nM), and now report that CR8-10 binds activated-Cry8Ca (5.7 nM) toxin. The extent of Cry toxins enhancement by DvCad1-CR8-10, which ranged from 3.30- to 5.93-fold, may have practical application for lesser mealworm control in preventing avian and human pathogen transfer in poultry facilities.


Subject(s)
Bacterial Proteins/toxicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Insect Proteins/toxicity , Pest Control, Biological/methods , Tenebrio , Animals , Bacillus thuringiensis Toxins , Coleoptera , Insect Proteins/metabolism , Tenebrio/drug effects
16.
Insects ; 15(9)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39336673

ABSTRACT

Spodoptera frugiperda (J.E. Smith) (Noctuidae: Lepidoptera) is a notable insect pest that invades major cereal crops, causing significant damage and loss. Resistances of 2nd instar larvae of two Egyptian field populations of S. frugiperda, collected from the Fayoum and Giza governments, were measured against eight insecticides, including traditional insecticides (profenofos and cypermethrin), bio-insecticides (emamectin benzoate, spinosad, and Bacillus thuringiensis), and insect growth regulators (IGRs) (lufenuron, diflubenzuron, and methoxyfenozide). In addition, the synergistic effects of three synergists (Piperonyl butoxide (PBO), diethyl maleate (DEM), and triphenyl phosphate (TPP) were assessed, and the activities of detoxification enzymes (acetylcholine esterase (AChE), cytochrome P-450 (CYP-450), carboxylesterase (CarE), and glutathione-s-transferase (GST) were also determined. Resistance surveillance revealed that the Fayoum field population showed moderate resistance to cypermethrin (RR = 5.75-fold), followed by spinosad (RR = 2.62-fold), and lufenuron (2.01-fold). On the other hand, the Giza population exhibited significant resistance to cypermethrin only (RR = 3.65-fold). Our results revealed that emamectin benzoate was the most effective insecticide, with an LC50 value of 0.003 mg/L for the Fayoum population and 0.001 mg/L for the Giza population, compared to the susceptible strain (0.005 mg/L). Among the biological insecticides, Bacillus thuringiensis was the least toxic insecticide of all the tested strains. Synergism assays indicated that DEM and TPP had the most synergistic effect on spinosad (SR = 8.00-fold for both), followed by PBO (SR = 5.71-fold) for the Fayoum population, compared with spinosad alone. The assay of detoxification enzymes showed that GST activity significantly (p < 0.05) increased in the two field strains compared to the susceptible strain. However, no significant changes were observed among the tested strains in CYP-450, CarE, or AChE. The findings of this study provide substantial insights into tracking and managing the development of insecticide resistance in S. frugiperda in Egypt.

17.
Biochem Pharmacol ; 229: 116482, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134284

ABSTRACT

The emerging antibiotic-resistant bacteria, especially the "ESKAPE" pathogens, pose a continuous threat to global health. In this study, we explored metalloantibiotics as promising therapeutics and innovative antimicrobial agents. The role of metal in the antimicrobial activity of chloroxine (5,7-dichloro-8-hydroxyquinoline), as a metalloantibiotic, was investigated by minimal inhibit concentration (MIC) assay and a series of assays, including growth curve, time-killing, and UV-visible spectroscopy and PAR (4-(2-pyridylazo)-resorcinol) competition assays. Both chloroxine and its structural analogues exhibited increased antibacterial potency against Gram-positive bacteria compared to Gram-negative bacteria. The introduction of exogenous manganese or zinc ions significantly boosted chloroxine's antibacterial efficacy against Gram-negative bacteria, including the notorious ESKAPE pathogens. However, the enhanced antibacterial activity induced by zinc ions could be negated in the presence of copper or ferrous iron ions, as well as changes in oxygen availability, highlighting the involvement of proton motive force, oxidative and antioxidative systems. Notably, chloroxine effectively inhibited the enzymatic activity of superoxide dismutase (SOD). In addition, chloroxine could reverse polymyxin and carbapenem resistance in E. coli in vitro. Therefore, these results suggested that chloroxine with zinc ions are promising therapeutics and antibiotics potentiator to combat multidrug-resistant ESKAPE pathogens.

18.
Insects ; 13(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36421946

ABSTRACT

A resistant strain (MRS) of Sitobion miscanthi was cultured by continuous selection with malathion for over 40 generations. The MRS exhibited 32.7-fold resistance to malathion compared to the susceptible strain (MSS) and 13.5-fold, 2.9-fold and 4.8-fold cross-resistance for omethoate, methomyl and beta-cypermethrin, respectively. However, no cross-resistance was found to imidacloprid in this resistant strain. The realized heritability for malathion resistance was 0.02. Inhibitors of esterase activity, both triphenyl phosphate (TPP) and S,S,S,-tributyl phosphorotrithioate (DEF) as synergists, exhibited significant synergism to malathion in the MRS strain, with 11.77-fold and 5.12-fold synergistic ratios, respectively, while piperonyl butoxide (PBO) and diethyl maleate (DEM) showed no significant synergism in the MRS strain. The biochemical assay indicated that carboxylesterase activity was higher in MRS than in MSS. These results suggest that the increase in esterase activity might play an important role in S. miscanthi resistance to malathion. Imidacloprid could be used as an alternative for malathion in the management of wheat aphid resistance.

19.
Ticks Tick Borne Dis ; 13(6): 102006, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35917692

ABSTRACT

The present study was taken up to evaluate the synergistic properties of piperonyl butoxide (PBO), diethyl maleate (DEM), triphenyl phosphate (TPP) and verapamil (VER) with deltamethrin (DLM) and ivermectin (IVM) against DLM and IVM resistant tick populations collected from Madhya Pradesh and Punjab states of India. The collected field tick populations were resistant to DLM (Resistance Factor [RF] in the range of 21.71-32.98) and IVM (RF in the range of 1.89-4.98). A strong synergism between DLM and, IVM with PBO and IVM with VER was noticed. The synergistic efficacy of PBO and VER with IVM in reducing the lethal concentration 50 (LC50) value (1.69-5.72 times for PBO and 3.00-10.62 times for VER) of IVM in resistant ticks suggest that a combination of these synergists with IVM can significantly enhance the effectiveness of IVM against IVM-resistant Rhipicephlaus microplus populations gradually establishing in the different parts of the country. The synergistic efficiency of PBO with DLM in reducing the LC50 value was 2.65 and 18.01 times, respectively, against DLM- resistant two R. microplus populations (KTN and LDH). The study revealed the gradual establishment of DLM and IVM resistant populations in the surveyed states suggesting the need to adopt required resistance management strategies. The use of synergists with DLM and IVM has emerged as an effective approach for controlling the acaricide-resistant ticks.

20.
Insects ; 13(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36135547

ABSTRACT

The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is the most notorious insect pest of potato globally. Injudicious use of insecticides for management of this pest has resulted in resistance to all major groups of insecticides along with many human, animal health, and environmental concerns. Additionally, the input cost of insecticide development/discovery is markedly increasing because each year thousands of chemicals are produced and tested for their insecticidal properties, requiring billions of dollars. For the management of resistance in insect pests, synergists can play a pivotal role by reducing the application dose of most insecticides. These eco-friendly synergists can be classified into two types: plant-based synergists and RNAi-based synergists. The use of plant-based and RNAi-based synergists in resistance management of insect pests can give promising results with lesser environmental side effects. This review summarizes the resistance status of CPB and discusses the potential advantage of plant-based and RNAi-based synergists for CPB resistance management. It will motivate researchers to further investigate the techniques of using plant- and RNAi-based synergists in combination with insecticides.

SELECTION OF CITATIONS
SEARCH DETAIL