Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 521(3): 814-820, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31708099

ABSTRACT

The dysregulation of Long noncoding RNAs (lncRNAs) has been implicated in many cardiovascular diseases, including cardiac fibrosis. However, the functions and mechanisms of lncRNAs in cardiac fibroblasts (CFs) have not been fully elucidated. First, we observed a correlation between cardiac remodeling (CR) and lncRNA FAF (FGF9-associated factor, termed FAF) expression in the heart. In vitro, we found that the expression of lncRNA FAF was altered in CFs, whereas it behaved inconsistently in cardiomyocytes (CMs). Next, we investigated the effects of lncRNA FAF on angiotensinogen II (Ang II)-induced cardiac fibrosis in neonatal rat CFs and explored the mechanism underlying these effects. In this study, lncRNA FAF was enriched in CFs and was associated with cardiac fibrosis. Upregulation of lncRNA FAF significantly restrained Ang II-induced increases in cell proliferation, differentiation and collagen accumulation of CFs. Moreover, we found that the function of lncRNA FAF was mainly realized through Transforming growth factor ß1 (TGFß1) secretion and then downregulated phosphorylation of Smad2/3. Additional analysis revealed that Fibroblast growth factor 9 (FGF9) is a direct target of lncRNA FAF, as the overexpression of lncRNA FAF could increase the expression of FGF9 and knockdown of the FGF9 expression could attenuate the down-regulation of lncRNA FAF on TGFß1-P-Smad2/3 pathway. Furthermore, knockdown of the FGF9 expression also abolished the inhibitory effect of FAF on fibrosis. In summary, we demonstrated that the overexpression of lncRNA FAF could inhibit fibrosis induced by Ang II via the TGFß1-P-Smad2/3 signalling by targeting FGF9 in CFs.


Subject(s)
Angiotensin II/metabolism , Fibroblast Growth Factor 9/genetics , Fibroblasts/pathology , Heart Diseases/pathology , RNA, Long Noncoding/genetics , Signal Transduction , Animals , Cell Proliferation , Fibroblasts/metabolism , Fibrosis , Heart Diseases/genetics , Heart Diseases/metabolism , Myocardium/metabolism , Myocardium/pathology , Rats, Sprague-Dawley , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL