Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764262

ABSTRACT

Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.


Subject(s)
Cannabinol , Inflammasomes , Humans , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammation/drug therapy , Macrophages , Anti-Inflammatory Agents/pharmacology , Nerve Tissue Proteins , Connexins
2.
Molecules ; 28(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630401

ABSTRACT

Dermatological diseases pose a significant burden on the quality of life of individuals and can be challenging to treat effectively. In this aspect, cannabinoids are gaining increasing importance due to their therapeutic potential in various disease entities including skin diseases. In this synthetic review, we comprehensively analyzed the existing literature in the field of potential dermatological applications of a lesser-known subgroup of cannabinoids, the so-called minor cannabinoids, such as cannabidivarin (CBDV), cannabidiforol (CBDP), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabielsoin (CBE), cannabimovone (CBM) or cannabinol (CBN), while drawing attention to their unique pharmacological properties. We systematically searched the available databases for relevant studies and analyzed the data to provide an overview of current thematic knowledge. We looked through the full-text, bibliographic and factographic databases, especially Scopus, Web of Science, PubMed, Polish Scientific Journals Database, and selected the most relevant papers. Our review highlights that minor cannabinoids exhibit diverse pharmacological activities, including anti-inflammatory, analgesic, antimicrobial, and anti-itch properties. Several studies have reported their efficacy in mitigating symptoms associated with dermatological diseases such as psoriasis, eczema, acne, and pruritus. Furthermore, minor cannabinoids have shown potential in regulating sebum production, a crucial factor in acne pathogenesis. The findings of this review suggest that minor cannabinoids hold therapeutic promise in the management of dermatological diseases. Further preclinical and clinical investigations are warranted to elucidate their mechanisms of action, determine optimal dosage regimens, and assess long-term safety profiles. Incorporating minor cannabinoids into dermatological therapies could potentially offer novel treatment options of patients and improve their overall well-being.


Subject(s)
Acne Vulgaris , Quality of Life , Humans , Anti-Inflammatory Agents, Non-Steroidal , Cannabinol , Databases, Factual
3.
Pharmacol Res ; 174: 105970, 2021 12.
Article in English | MEDLINE | ID: mdl-34758399

ABSTRACT

We have here assessed, using Δ9-tetrahydrocannabinol (Δ9-THC) for comparison, the effect of Δ9-tetrahydrocannabinolic acid (Δ9-THCA) and of Δ9-tetrahydrocannabivarin (Δ9-THCV) that is mediated by human versions of CB1, CB2, and CB1-CB2 receptor functional units, expressed in a heterologous system. Binding to the CB1 and CB2 receptors was addressed in living cells by means of a homogeneous assay. A biphasic competition curve for the binding to the CB2 receptor, was obtained for Δ9-THCV in cells expressing the two receptors. Signaling studies included cAMP level determination, activation of the mitogen-activated protein kinase pathway and ß-arrestin recruitment were performed. The signaling triggered by Δ9-THCA and Δ9-THCV via individual receptors or receptor heteromers disclosed differential bias, i.e. the bias observed using a given phytocannabinoid depended on the receptor (CB1, CB2 or CB1-CB2) and on the compound used as reference to calculate the bias factor (Δ9-THC, a selective agonist or a non-selective agonist). These results are consistent with different binding modes leading to differential functional selectivity depending on the agonist structure, and the state (monomeric or heteromeric) of the cannabinoid receptor. In addition, on studying Gi-coupling we showed that Δ9-THCV and Δ9-THCA and Δ9-THCV were able to revert the effect of a selective CB2 receptor agonist, but only Δ9-THCV, and not Δ9-THCA, reverted the effect of arachidonyl-2'-chloroethylamide (ACEA 100 nM) a selective agonist of the CB1 receptor. Overall, these results indicate that cannabinoids may have a variety of binding modes that results in qualitatively different effects depending on the signaling pathway that is engaged upon cannabinoid receptor activation.


Subject(s)
Dronabinol/analogs & derivatives , Dronabinol/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Binding, Competitive , HEK293 Cells , Humans , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/genetics
4.
Neurobiol Dis ; 141: 104892, 2020 07.
Article in English | MEDLINE | ID: mdl-32387338

ABSTRACT

The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic model of dopaminergic deficiency, Pitx3ak mutant mice, which serves as a useful model for testing anti-dyskinetic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly, when combined with L-DOPA from the first injection, Δ9-THCV delayed the appearance of all these signs and decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced dyskinesia. In addition to the anti-dyskinetic effects of Δ9-THCV when administered at the onset of L-DOPA treatment, Δ9-THCV was also effective in attenuating the intensity of dyskinesia when administered for three consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.


Subject(s)
Anti-Dyskinesia Agents/administration & dosage , Dronabinol/analogs & derivatives , Dyskinesia, Drug-Induced/prevention & control , Levodopa/administration & dosage , Parkinson Disease/complications , Animals , Disease Models, Animal , Dronabinol/administration & dosage , Homeodomain Proteins/genetics , Male , Transcription Factors/genetics
5.
Epilepsy Behav ; 70(Pt B): 349-354, 2017 05.
Article in English | MEDLINE | ID: mdl-28109780

ABSTRACT

Recent interest for the use of cannabis-derived products as therapeutic agents in the treatment of epilepsies has necessitated a reevaluation of their effects on brain and behavior. Overall, prolonged cannabis use is thought to result in functional and structural brain alterations. These effects may be dependent on a number of factors: e.g., which phytocannabinoid is used (e.g., cannabidiol (CBD) vs. tetrahyrocannabinol (THC)), the frequency of use (occasional vs. heavy), and at what age (prenatal, childhood, adulthood) the use began. However, due to the fact that there are over seven hundred constituents that make up the Cannabis sativa plant, it is difficult to determine which compound or combination of compounds is responsible for specific effects when studying recreational users. Therefore, this review focuses only on the functional MRI studies investigating the effects of specific pharmacological preparations of cannabis compounds, specifically THC, tetrahydrocannabivarin (THCV), and CBD, on brain function in healthy individuals and persons with epilepsy with references to non-epilepsy studies only to underline the gaps in research that need to be filled before cannabis-derived products are considered for a wide use in the treatment of epilepsy. This article is part of a Special Issue entitled "Cannabinoids and Epilepsy".


Subject(s)
Cannabinoids/therapeutic use , Cannabis , Epilepsy/diagnostic imaging , Epilepsy/drug therapy , Medical Marijuana/therapeutic use , Neuroimaging/methods , Brain/diagnostic imaging , Brain/drug effects , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabinoids/pharmacology , Cannabis/chemistry , Comprehension , Dronabinol/pharmacology , Dronabinol/therapeutic use , Drug Combinations , Humans , Marijuana Smoking , Medical Marijuana/pharmacology , Neuroimaging/trends
6.
Int J Neuropsychopharmacol ; 18(6)2014 Dec 25.
Article in English | MEDLINE | ID: mdl-25542687

ABSTRACT

BACKGROUND: Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. METHODS: We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. RESULTS: There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. CONCLUSIONS: Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects.


Subject(s)
Anti-Obesity Agents/administration & dosage , Avoidance Learning/drug effects , Brain/drug effects , Cannabinoid Receptor Antagonists/administration & dosage , Dronabinol/analogs & derivatives , Feeding Behavior/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Reward , Adult , Affect , Anti-Obesity Agents/adverse effects , Brain/metabolism , Brain Mapping/methods , Cacao , Cannabinoid Receptor Antagonists/adverse effects , Cross-Over Studies , Double-Blind Method , Dronabinol/administration & dosage , Dronabinol/adverse effects , Female , Fragaria/microbiology , Fruit/microbiology , Fungi , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation , Receptor, Cannabinoid, CB1/metabolism , Taste , Taste Perception , Visual Perception , Young Adult
7.
Article in English | MEDLINE | ID: mdl-38417478

ABSTRACT

BACKGROUND: The cannabis plant contains several cannabinoids, and many terpenoids that give cannabis its distinctive flavoring and aroma. Δ9-Tetrahydrocannabinol (Δ9-THC) is the plant's primary psychoactive constituent. Given the abuse liability of Δ9-THC, assessment of the psychoactive effects of minor cannabinoids and other plant constituents is important, especially for compounds that may be used medicinally. This study sought to evaluate select minor cannabinoids and terpenes for Δ9-THC-like psychoactivity in mouse Δ9-THC drug discrimination and determine their binding affinities at CB1 and CB2 receptors. METHODS: Δ9-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabichromenevarin (CBCV), Δ8-tetrahydrocannabinol (Δ8-THC), (6aR,9R)-Δ10-tetrahydrocannabinol [(6aR,9R)-Δ10-THC], Δ9-tetrahydrocannabinol varin (THCV), ß-caryophyllene (BC), and ß-caryophyllene oxide (BCO) were examined. RESULTS: All minor cannabinoids showed measurable cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor binding, with CBC, CBCV, and CBD, showing the weakest CB1 receptor binding affinity. BC and BCO exhibited negligible affinity for both CB1 and CB2 receptors. In drug discrimination, only Δ8-THC fully substituted for Δ9-THC, while CBN and (6aR,9R)-Δ10-THC partially substituted for Δ9-THC. THCV and BCO did not alter the discriminative stimulus effects of Δ9-THC. CONCLUSION: In summary, only some of myriad cannabinoids and other chemicals found in the cannabis plant bind potently to the identified cannabinoid receptors. Further, only four of the compounds tested herein [Δ9-THC, Δ8-THC, (6aR,9R)-Δ10-THC, and CBN] produced Δ9-THC-like discriminative stimulus effects, suggesting they may possess cannabimimetic subjective effects. Given that the medicinal properties of phytocannabinoids and terpenoids are being investigated scientifically, delineation of their potential adverse effects, including their ability to produce Δ9-THC-like intoxication, is crucial.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Mice , Animals , Dronabinol/pharmacology , Terpenes/pharmacology , Cannabinoids/pharmacology , Cannabinoids/metabolism , Cannabis/metabolism , Cannabidiol/pharmacology , Cannabinol/pharmacology
8.
J Anal Toxicol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836589

ABSTRACT

BACKGROUND: In recent years, potential therapeutic applications of several different cannabinoids, such as Δ9-tetrahydrocannabinol (Δ9-THC), its isomer Δ8-THC and Δ9-tetrahydrocannabivarin (Δ9-THCV), have been investigated. Nevertheless, to establish dose-effect relationship and to gain knowledge of their pharmacokinetics and metabolism, sensitive and specific analytical assays are needed to measure these compounds in patients. For this reason, we developed and validated an online extraction high-performance liquid chromatography- tandem mass spectrometry (LC/LC-MS/MS) method for the simultaneous quantification of 13 cannabinoids and metabolites including the Δ8 and Δ9 isomers of THC, THCV and those of their major metabolites in human plasma. METHODS: Plasma was fortified with cannabinoids at varying concentrations within the working range of the respective compound and 200 µL were extracted using a simple one-step protein precipitation procedure. The extracts were analyzed using online trapping LC/LC-atmospheric pressure chemical ionization (APCI)-MS/MS running in the positive multiple reaction monitoring (MRM) mode. RESULTS: The lower limit of quantification ranged from 0.5 to 2.5 ng/mL and the upper limit of quantification was 400 ng/mL for all analytes. Inter-day analytical accuracy and imprecision ranged from 82.9 to 109% and 4.3 to 20.3% (coefficient of variance), respectively. Of 534 plasma samples following controlled oral administration of Δ8-THCV, 236 were positive for Δ8-THCV (median; interquartile ranges: 3.5 ng/mL; 1.8 - 11.9 ng/mL), 383 for the major metabolite (-)-11-nor-9-carboxy-Δ8-tetrahydrocannabivarin (Δ8-THCV-COOH) (95.4 ng/mL; 20.7 - 328 ng/mL), 260 for (-)-11-nor-9-carboxy-Δ9-tetrahydrocannabivarin (Δ9-THCV-COOH) (5.8 ng/mL; 2.5 - 16.1 ng/mL), 157 for (-)-11-hydroxy-Δ8-tetrahydrocannabivarin (11-OH-Δ8-THCV) (1.7 ng/mL; 1.0 - 3.7 ng/mL), 49 for Δ8-THC-COOH (1.7 ng/mL; 1.4 - 2.3 ng/mL) and 42 for Δ9-THCV (1.3 ng/mL; 0.8 - 1.6 ng/mL). CONCLUSIONS: We developed and validated the first LC/LC-MS/MS assay for the specific quantification of Δ8-THC, Δ9-THC and THCV isomers and their respective metabolites in human plasma. Δ8-THCV-COOH, 11-hydroxy-Δ8-THCV and Δ9-THCV-COOH were the major Δ8-THCV metabolites in human plasma after oral administration of 98.6% pure Δ8-THCV.

9.
Cannabis Cannabinoid Res ; 8(S1): S71-S82, 2023 09.
Article in English | MEDLINE | ID: mdl-37721990

ABSTRACT

Introduction: Tetrahydrocannabivarin (THCV) is an understudied cannabinoid that appears to have effects that vary as a function of dose. No human study has evaluated the safety and nature of effects in a wide range of THCV doses. Methods: This was a two-phase, dose-ranging, placebo-controlled trial of the Δ8 isomer of oral THCV in healthy adults. Phase 1 utilized an unblinded, single-ascending dose design (n=3). Phase 2 used a double-blind, randomized, within-participant crossover design (n=18). Participants received single acute doses of placebo and 12.5, 25, 50, 100, and 200 mg of THCV. Safety measures and subjective and cognitive effects were assessed predose and up to 8 h postdose. Results: Most adverse events (AEs; 55/60) were mild. Euphoric mood was the most common AE. The 12.5, 25, and 200 mg doses produced significantly lower minimum times to complete the digit vigilance test (ps=0.01). The 25 mg dose showed elevations on mean ratings of "energetic" at 1-, 2-, and 4-h postdose, but the maximum postdose rating for this dose did not achieve statistical significance relative to placebo ([95% confidence interval]=3.2 [-0.5 to 6.9], p=0.116). The 100 and 200 mg doses showed elevations on ratings of "feel a drug effect" and "like the drug effect." Almost all urine drug screens (78/79) at 8 h postdose in the active THCV conditions tested positive for tetrahydrocannabinol (THC). Conclusion: All THCV doses displayed a favorable safety profile. Several THCV doses showed a preliminary signal for improved sustained attention, but the effect was not dose dependent. Though mild and not associated with impairment, THC-like effects were observed at higher THCV doses. Oral THCV-containing products could lead to positive urine drug screens for THC. ClinicalTrials.gov ID: NCT05210634.


Subject(s)
Cannabinoids , Emotions , Adult , Humans , Healthy Volunteers , Double-Blind Method , Euphoria
10.
Mol Neurobiol ; 59(8): 5070-5083, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35666403

ABSTRACT

Δ9-Tetrahydrocannabinol (Δ9-THC) inhibits tics in individuals with Tourette syndrome (TS). Δ9-THC has similar affinities for CB1/CB2 cannabinoid receptors. However, the effect of HU-308, a selective CB2 receptor agonist, on repetitive behaviors has not been investigated. The effects of 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced motor-like tics and Δ9-THC were studied with gene analysis. The effects of HU-308 on head twitch response (HTR), ear scratch response (ESR), and grooming behavior were compared between wildtype and CB2 receptor knockout (CB2-/-) mice, and in the presence/absence of DOI or SR141716A, a CB1 receptor antagonist/inverse agonist. The frequency of DOI-induced repetitive behaviors was higher in CB2-/- than in wildtype mice. HU-308 increased DOI-induced ESR and grooming behavior in adult CB2-/- mice. In juveniles, HU-308 inhibited HTR and ESR in the presence of DOI and SR141716A. HU-308 and beta-caryophyllene significantly increased HTR. In the left prefrontal cortex, DOI increased transcript expression of the CB2 receptor and GPR55, but reduced fatty acid amide hydrolase (FAAH) and α/ß-hydrolase domain-containing 6 (ABHD6) expression levels. CB2 receptors are required to reduce 5-HT2A/2C-induced tics in adults. HU-308 has an off-target effect which increases 5-HT2A/2C-induced motor-like tics in adult female mice. The increased HTR in juveniles induced by selective CB2 receptor agonists suggests that stimulation of the CB2 receptor may generate motor tics in children. Sex differences suggest that the CB2 receptor may contribute to the prevalence of TS in boys. The 5-HT2A/2C-induced reduction in endocannabinoid catabolic enzyme expression level may explain the increased endocannabinoids' levels in patients with TS.


Subject(s)
Tourette Syndrome , Animals , Dronabinol/pharmacology , Endocannabinoids , Female , Humans , Male , Mice , Monoacylglycerol Lipases , Receptor, Cannabinoid, CB2/genetics , Receptors, Cannabinoid , Rimonabant/pharmacology , Serotonin , Tics
11.
Article in English | MEDLINE | ID: mdl-33920188

ABSTRACT

Epilepsy is a neurological disorder mainly characterised by recurrent seizures that affect the entire population diagnosed with the condition. Currently, there is no cure for the disease and a significant proportion of patients have been deemed to have treatment-resistant epilepsy (TRE). A patient is deemed to have TRE if two or more antiepileptic drugs (AEDs) fail to bring about seizure remission. This inefficacy of traditional AEDs, coupled with their undesirable side effect profile, has led to researchers considering alternative forms of treatment. Phytocannabinoids have long served as therapeutics with delta-9-THC (Δ9-THC) receiving extensive focus to determine its therapeutic potential. This focus on Δ9-THC has been to the detriment of analysing the plethora of other phytocannabinoids found in the cannabis plant. The overall aim of this review is to explore other novel phytocannabinoids and their place in epilepsy treatment. The current review intends to achieve this aim via an exploration of the molecular targets underlying the anticonvulsant capabilities of cannabidiol (CBD), cannabidavarin (CBDV), delta-9-tetrahydrocannabivarin (Δ9-THCV) and cannabigerol (CBG). Further, this review will provide an exploration of current pre-clinical and clinical data as it relates to the aforementioned phytocannabinoids and the treatment of epilepsy symptoms. With specific reference to epilepsy in young adult and adolescent populations, the exploration of CBD, CBDV, Δ9-THCV and CBG in both preclinical and clinical environments can guide future research and aid in the further understanding of the role of phytocannabinoids in epilepsy treatment. Currently, much more research is warranted in this area to be conclusive.


Subject(s)
Cannabidiol , Cannabis , Epilepsy , Adolescent , Anticonvulsants/therapeutic use , Cannabidiol/therapeutic use , Epilepsy/drug therapy , Humans , Seizures
12.
J Cannabis Res ; 2(1): 6, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-33526143

ABSTRACT

Δ9-Tetrahydrocannabivarin (THCV) is a cannabis-derived compound with unique properties that set it apart from the more common cannabinoids, such as Δ9-tetrahydrocannabinol (THC). The main advantage of THCV over THC is the lack of psychoactive effects. In rodent studies, THCV decreases appetite, increases satiety, and up-regulates energy metabolism, making it a clinically useful remedy for weight loss and management of obesity and type 2 diabetic patients. The distinctions between THCV and THC in terms of glycemic control, glucose metabolism, and energy regulation have been demonstrated in previous studies. Also, the effect of THCV on dyslipidemia and glycemic control in type 2 diabetics showed reduced fasting plasma glucose concentration when compared to a placebo group. In contrast, THC is indicated in individuals with cachexia. However, the uniquely diverse properties of THCV provide neuroprotection, appetite suppression, glycemic control, and reduced side effects, etc.; therefore, making it a potential priority candidate for the development of clinically useful therapies in the future. Hopefully, THCV could provide an optional platform for the treatment of life-threatening diseases.

13.
PeerJ ; 8: e9811, 2020.
Article in English | MEDLINE | ID: mdl-32904155

ABSTRACT

BACKGROUND: The insulin-sensitizing phytocannabinoid, Δ(9)-tetrahydrocannabivarin (THCV) can signal partly via G-protein coupled receptor-55 (GPR55 behaving as either an agonist or an antagonist depending on the assay). The cannabinoid receptor type 1 (CB1R) inverse agonist rimonabant is also a GPR55 agonist under some conditions. Previous studies have shown varied effects of deletion of GPR55 on energy balance and glucose homeostasis in mice. The contribution of signalling via GPR55 to the metabolic effects of THCV and rimonabant has been little studied. METHODS: In a preliminary experiment, energy balance and glucose homeostasis were studied in GPR55 knockout and wild-type mice fed on both standard chow (to 20 weeks of age) and high fat diets (from 6 to 15 weeks of age). In the main experiment, all mice were fed on the high fat diet (from 6 to 14 weeks of age). In addition to replicating the preliminary experiment, the effects of once daily administration of THCV (15 mg kg-1 po) and rimonabant (10 mg kg-1 po) were compared in the two genotypes. RESULTS: There was no effect of genotype on absolute body weight or weight gain, body composition measured by either dual-energy X-ray absorptiometry or Nuclear Magnetic Resonance (NMR), fat pad weights, food intake, energy expenditure, locomotor activity, glucose tolerance or insulin tolerance in mice fed on chow. When the mice were fed a high fat diet, there was again no effect of genotype on these various aspects of energy balance. However, in both experiments, glucose tolerance was worse in the knockout than the wild-type mice. Genotype did not affect insulin tolerance in either experiment. Weight loss in rimonabant- and THCV-treated mice was lower in knockout than in wild-type mice, but surprisingly there was no detectable effect of genotype on the effects of the drugs on any aspect of glucose homeostasis after taking into account the effect of genotype in vehicle-treated mice. CONCLUSIONS: Our two experiments differ from those reported by others in finding impaired glucose tolerance in GPR55 knockout mice in the absence of any effect on body weight, body composition, locomotor activity or energy expenditure. Nor could we detect any effect of genotype on insulin tolerance, so the possibility that GPR55 regulates glucose-stimulated insulin secretion merits further investigation. By contrast with the genotype effect in untreated mice, we found that THCV and rimonabant reduced weight gain, and this effect was in part mediated by GPR55.

14.
Prog Chem Org Nat Prod ; 103: 103-131, 2017.
Article in English | MEDLINE | ID: mdl-28120232

ABSTRACT

For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects. These effects are associated with the phytocannabinoids which are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L. To date, over 120 phytocannabinoids have been isolated from Cannabis. For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets. This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and CBD, from the prospective of the targets at which these important compounds act.


Subject(s)
Cannabinoids/pharmacology , Cannabis/chemistry , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB2/drug effects , Animals
15.
J Psychopharmacol ; 30(2): 140-51, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26577065

ABSTRACT

RATIONALE: Cannabis is mostly grown under illegal and unregulated circumstances, which seems to favour a product increasingly high in its main cannabinoid ∆-9-tetrahydrocannabinol (THC). ∆-9-tetrahydrocannabivarin (THCV) is a relatively untested cannabinoid which is said to be a cannabinoid receptor neutral antagonist, and may inhibit the effects of THC. OBJECTIVES: To explore the safety and tolerability of repeated THCV administration and its effects on symptoms normally induced by THC in a sample of healthy volunteers. METHODS: Ten male cannabis users (<25 use occasions) were recruited for this within-subjects, placebo-controlled, double-blind, cross-over pilot study. 10mg oral pure THCV or placebo were administered daily for five days, followed by 1mg intravenous THC on the fifth day. RESULTS: THCV was well tolerated and subjectively indistinguishable from placebo. THC did not significantly increase psychotic symptoms, paranoia or impair short-term memory, while still producing significant intoxicating effects. Delayed verbal recall was impaired by THC and only occurred under placebo condition (Z=-2.201, p=0.028), suggesting a protective effect of THCV. THCV also inhibited THC-induced increased heart rate (Z=-2.193, p=0.028). Nine out of ten participants reported THC under THCV condition (compared to placebo) to be subjectively weaker or less intense (χ(2)=6.4, p=0.011). THCV in combination with THC significantly increased memory intrusions (Z=-2.155, p=0.031). CONCLUSION: In this first study of THC and THCV, THCV inhibited some of the well-known effects of THC, while potentiating others. These findings need to be interpreted with caution due to a small sample size and lack of THC-induced psychotomimetic and memory-impairing effect, probably owing to the choice of dose.


Subject(s)
Cognition/drug effects , Dronabinol/analogs & derivatives , Hallucinogens/pharmacology , Memory/drug effects , Adult , Cross-Over Studies , Double-Blind Method , Dronabinol/administration & dosage , Dronabinol/pharmacology , Hallucinogens/administration & dosage , Heart Rate/drug effects , Humans , Male , Mental Recall/drug effects , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL