Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.988
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 235-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38271641

ABSTRACT

The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Lineage , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Mice , Transcription Factors/metabolism , Transcriptome , Multiomics
2.
Annu Rev Immunol ; 41: 181-205, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37126417

ABSTRACT

There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.


Subject(s)
Aging , T-Lymphocyte Subsets , Humans , Animals , T-Lymphocytes, Regulatory , Cell Differentiation
3.
Annu Rev Immunol ; 40: 95-119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35471838

ABSTRACT

A high diversity of αß T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.


Subject(s)
Cues , Receptors, Antigen, T-Cell , Animals , Humans , Lymphocyte Activation , Receptors, Antigen, T-Cell/genetics , Signal Transduction , T-Lymphocytes, Regulatory
4.
Annu Rev Immunol ; 38: 421-453, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31990619

ABSTRACT

Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.


Subject(s)
Cell Differentiation/immunology , Lymphopoiesis/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Biomarkers , Cell Differentiation/genetics , Clonal Deletion , Clonal Selection, Antigen-Mediated , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphopoiesis/genetics , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism
5.
Annu Rev Immunol ; 38: 1-21, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31594433

ABSTRACT

It is difficult to believe that in about 1960 practically nothing was known about the thymus and some of its products, T cells bearing αß receptors for antigen. Thus I was lucky to join the field of T cell biology almost at its beginning, when knowledge about the cells was just getting off the ground and there was so much to discover. This article describes findings about these cells made by others and myself that led us all from ignorance, via complete confusion, to our current state of knowledge. I believe I was fortunate to practice science in very supportive institutions and with very collaborative colleagues in two countries that both encourage independent research by independent scientists, while simultaneously ignoring or somehow being able to avoid some of the difficulties of being a woman in what was, at the time, a male-dominated profession.


Subject(s)
Disease Susceptibility , Obsessive-Compulsive Disorder/etiology , Obsessive-Compulsive Disorder/metabolism , Animals , Autoimmunity , Biomarkers , Cell Death , Cytokines/metabolism , Disease Susceptibility/immunology , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Humans , Immunity, Innate , Obsessive-Compulsive Disorder/psychology , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Superantigens/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism
6.
Annu Rev Immunol ; 37: 497-519, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026413

ABSTRACT

During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.


Subject(s)
B-Lymphocytes/immunology , Lymphocytes/physiology , Lymphoid Progenitor Cells/physiology , Natural Killer T-Cells/immunology , Thymus Gland/immunology , Animals , Cell Differentiation , Cell Lineage , Cellular Microenvironment , Cytokines/metabolism , Humans , Immunity, Innate , Lymphocyte Activation , Paracrine Communication , Transcriptome
7.
Annu Rev Immunol ; 36: 579-601, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677476

ABSTRACT

A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αß T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.


Subject(s)
Cell Differentiation/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , Animals , CD4 Antigens/genetics , CD4 Antigens/metabolism , CD8 Antigens/genetics , CD8 Antigens/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , Core Binding Factor Alpha 3 Subunit/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation , Humans , Immunomodulation/genetics , Immunomodulation/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Regulatory Sequences, Nucleic Acid , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/genetics , Transcription, Genetic
8.
Annu Rev Immunol ; 35: 85-118, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28226225

ABSTRACT

Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.


Subject(s)
Epithelial Cells/metabolism , T-Lymphocytes/physiology , Thymus Gland/pathology , Animals , Autoimmunity , Cell Differentiation , Epithelial Cells/immunology , Forkhead Transcription Factors/metabolism , Humans , Immune Tolerance , Thymus Gland/immunology , Transcription Factors/metabolism , AIRE Protein
9.
Annu Rev Immunol ; 34: 203-42, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26907216

ABSTRACT

The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues. In this review we focus on the role of the chemokine system in the migration dynamics of immune cells within lymphoid organs at the steady state and on how these dynamics are affected by infectious and inflammatory processes.


Subject(s)
Chemokines/immunology , Immune System , Infections/immunology , Inflammation/immunology , Lymphocytes/immunology , Lymphoid Tissue/immunology , Receptors, Chemokine/immunology , Animals , Cell Communication , Cell Movement , Humans , Lymphocyte Activation
10.
Cell ; 185(14): 2542-2558.e18, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35714609

ABSTRACT

Medullary thymic epithelial cells (mTECs) ectopically express thousands of peripheral-tissue antigens (PTAs), which drive deletion or phenotypic diversion of self-reactive immature T cells during thymic differentiation. Failure of PTA expression causes multiorgan autoimmunity. By assaying chromatin accessibility in individual mTECs, we uncovered signatures of lineage-defining transcription factors (TFs) for skin, lung, liver, and intestinal cells-including Grhl, FoxA, FoxJ1, Hnf4, Sox8, and SpiB-in distinct mTEC subtypes. Transcriptomic and histologic analyses showed that these subtypes, which we collectively term mimetic cells, expressed PTAs in a biologically logical fashion, mirroring extra-thymic cell types while maintaining mTEC identity. Lineage-defining TFs bound to mimetic-cell open chromatin regions and were required for mimetic cell accumulation, whereas the tolerogenic factor Aire was partially and variably required. Expression of a model antigen in mimetic cells sufficed to induce cognate T cell tolerance. Thus, mTECs co-opt lineage-defining TFs to drive mimetic cell accumulation, PTA expression, and self-tolerance.


Subject(s)
Epithelial Cells , T-Lymphocytes , Animals , Antigens , Cell Differentiation , Chromatin/metabolism , Epithelial Cells/metabolism , Mice , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Immunity ; 54(11): 2497-2513.e9, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34562377

ABSTRACT

Innate-like T cell populations expressing conserved TCRs play critical roles in immunity through diverse developmentally acquired effector functions. Focusing on the prototypical lineage of invariant natural killer T (iNKT) cells, we sought to dissect the mechanisms and timing of fate decisions and functional effector differentiation. Utilizing induced expression of the semi-invariant NKT cell TCR on double positive thymocytes, an initially highly synchronous wave of iNKT cell development was triggered by brief homogeneous TCR signaling. After reaching a uniform progenitor state characterized by IL-4 production potential and proliferation, effector subsets emerged simultaneously, but then diverged toward different fates. While NKT17 specification was quickly completed, NKT1 cells slowly differentiated and expanded. NKT2 cells resembled maturing progenitors, which gradually diminished in numbers. Thus, iNKT subset diversification occurs in dividing progenitor cells without acute TCR input but utilizes multiple active cytokine signaling pathways. These data imply a two-step model of iNKT effector differentiation.


Subject(s)
Cytokines/metabolism , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Biomarkers , Cell Differentiation/immunology , Lymphocyte Activation/immunology
12.
Annu Rev Cell Dev Biol ; 32: 327-348, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27712102

ABSTRACT

Thymocyte selection involves the positive and negative selection of the repertoire of T cell receptors (TCRs) such that the organism does not suffer autoimmunity, yet has the benefit of the ability to recognize any invading pathogen. The signal transduced through the TCR is translated into a number of different signaling cascades that result in transcription factor activity in the nucleus and changes to the cytoskeleton and motility. Negative selection involves inducing apoptosis in thymocytes that express strongly self-reactive TCRs, whereas positive selection must induce survival and differentiation programs in cells that are more weakly self-reactive. The TCR recognition event is analog by nature, but the outcome of signaling is not. A large number of molecules regulate the strength of the TCR-derived signal at various points in the cascades. This review discusses the various factors that can regulate the strength of the TCR signal during thymocyte development.


Subject(s)
Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Animals , Humans , Lymphocyte Subsets/metabolism , Models, Biological , Proteasome Endopeptidase Complex/metabolism
13.
Immunity ; 52(6): 1088-1104.e6, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32304633

ABSTRACT

During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , RNA, Small Cytoplasmic/genetics , Thymocytes/cytology , Thymocytes/metabolism , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Single-Cell Analysis , Thymocytes/immunology , Transcriptome
14.
Immunity ; 53(6): 1182-1201.e8, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33242395

ABSTRACT

αß lineage T cells, most of which are CD4+ or CD8+ and recognize MHC I- or MHC II-presented antigens, are essential for immune responses and develop from CD4+CD8+ thymocytes. The absence of in vitro models and the heterogeneity of αß thymocytes have hampered analyses of their intrathymic differentiation. Here, combining single-cell RNA and ATAC (chromatin accessibility) sequencing, we identified mouse and human αß thymocyte developmental trajectories. We demonstrated asymmetric emergence of CD4+ and CD8+ lineages, matched differentiation programs of agonist-signaled cells to their MHC specificity, and identified correspondences between mouse and human transcriptomic and epigenomic patterns. Through computational analysis of single-cell data and binding sites for the CD4+-lineage transcription factor Thpok, we inferred transcriptional networks associated with CD4+- or CD8+-lineage differentiation, and with expression of Thpok or of the CD8+-lineage factor Runx3. Our findings provide insight into the mechanisms of CD4+ and CD8+ T cell differentiation and a foundation for mechanistic investigations of αß T cell development.


Subject(s)
Cell Differentiation/immunology , Cell Lineage/immunology , T-Lymphocyte Subsets/immunology , Thymocytes/immunology , Animals , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Epigenome , Gene Expression Regulation , Gene Regulatory Networks , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Humans , Mice , T-Lymphocyte Subsets/metabolism , Thymocytes/metabolism , Thymus Gland/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
15.
Immunity ; 51(5): 930-948.e6, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31604687

ABSTRACT

Generation of the first T lymphocytes in the human embryo involves the emergence, migration, and thymus seeding of lymphoid progenitors together with concomitant thymus organogenesis, which is the initial step to establish the entire adaptive immune system. However, the cellular and molecular programs regulating this process remain unclear. We constructed a single-cell transcriptional landscape of human early T lymphopoiesis by using cells from multiple hemogenic and hematopoietic sites spanning embryonic and fetal stages. Among heterogenous early thymic progenitors, one subtype shared common features with a subset of lymphoid progenitors in fetal liver that are known as thymus-seeding progenitors. Unbiased bioinformatics analysis identified a distinct type of pre-thymic lymphoid progenitors in the aorta-gonad-mesonephros (AGM) region. In parallel, we investigated thymic epithelial cell development and potential cell-cell interactions during thymus organogenesis. Together, our data provide insights into human early T lymphopoiesis that prospectively direct T lymphocyte regeneration, which might lead to development of clinical applications.


Subject(s)
Cell Differentiation/genetics , Lymphopoiesis/genetics , Organogenesis/genetics , Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/metabolism , Thymus Gland/embryology , Biomarkers , Cell Differentiation/immunology , Embryo, Mammalian , Embryonic Development/genetics , Gene Expression Profiling , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Lymphopoiesis/immunology , Signal Detection, Psychological , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism , Transcriptome
16.
Immunol Rev ; 322(1): 178-211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228406

ABSTRACT

The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.


Subject(s)
Immunologic Deficiency Syndromes , T-Lymphocytes , Thymus Gland/abnormalities , Infant, Newborn , Humans , Cell Differentiation
17.
Development ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958026

ABSTRACT

Thymic epithelial cells (TECs) are a critical functional component of the thymus's ability to generate T cells for the adaptive immune system in vertebrates. However, no in vitro system for studying TEC function exists. Overexpressing the transcription factor FOXN1 initiates transdifferentiation of fibroblasts into TEC-like cells (iTECs) that support T cell differentiation in culture or after transplant. In this study, we characterized iTEC programming at the cellular and molecular level to determine how it proceeds and identified mechanisms that can be targeted for improving this process. These data showed that iTEC programming consisted of discrete gene expression changes that differed early and late in the process, and that iTECs upregulated markers of both cortical and medullary TEC (cTEC and mTEC) lineages. We demonstrated that promoting proliferation enhanced iTEC generation, and that Notch inhibition allowed induction of mTEC differentiation. Finally, we showed that MHCII expression was the major difference between iTECs and fetal TECs. MHCII expression was improved by co-culturing iTECs with fetal double-positive T-cells. This study supports future efforts to improve iTEC generation for both research and translational uses.

18.
Trends Immunol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908962

ABSTRACT

Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.

19.
Immunity ; 48(6): 1258-1270.e6, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29884461

ABSTRACT

Thymus development is critical to the adaptive immune system, yet a comprehensive transcriptional framework capturing thymus organogenesis at single-cell resolution is still needed. We applied single-cell RNA sequencing (RNA-seq) to capture 8 days of thymus development, perturbations of T cell receptor rearrangement, and in vitro organ cultures, producing profiles of 24,279 cells. We resolved transcriptional heterogeneity of developing lymphocytes, and genetic perturbation confirmed T cell identity of conventional and non-conventional lymphocytes. We characterized maturation dynamics of thymic epithelial cells in vivo, classified cell maturation state in a thymic organ culture, and revealed the intrinsic capacity of thymic epithelium to preserve transcriptional regularity despite exposure to exogenous retinoic acid. Finally, by integrating the cell atlas with human genome-wide association study (GWAS) data and autoimmune-disease-related genes, we implicated embryonic thymus-resident cells as possible participants in autoimmune disease etiologies. This resource provides a single-cell transcriptional framework for biological discovery and molecular analysis of thymus organogenesis.


Subject(s)
Cell Differentiation/immunology , Sequence Analysis, RNA/methods , T-Lymphocytes/immunology , Thymus Gland/embryology , Animals , Autoimmune Diseases/immunology , Embryo, Mammalian , Gene Expression Profiling/methods , Genome-Wide Association Study , Humans , Mice , Organogenesis/immunology , T-Lymphocytes/cytology , Thymus Gland/cytology
20.
Immunity ; 49(5): 857-872.e5, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30413363

ABSTRACT

Lineage-committed αß and γδ T cells are thought to originate from common intrathymic multipotent progenitors following instructive T cell receptor (TCR) signals. A subset of lymph node and mucosal Vγ2+ γδ T cells is programmed intrathymically to produce IL-17 (Tγδ17 cells), however the role of the γδTCR in development of these cells remains controversial. Here we generated reporter mice for the Tγδ17 lineage-defining transcription factor SOX13 and identified fetal-origin, intrathymic Sox13+ progenitors. In organ culture developmental assays, Tγδ17 cells derived primarily from Sox13+ progenitors, and not from other known lymphoid progenitors. Single cell transcriptome assays of the progenitors found in TCR-deficient mice demonstrated that Tγδ17 lineage programming was independent of γδTCR. Instead, generation of the lineage committed progenitors and Tγδ17 cells was controlled by TCF1 and SOX13. Thus, T lymphocyte lineage fate can be prewired cell-intrinsically and is not necessarily specified by clonal antigen receptor signals.


Subject(s)
Autoantigens/metabolism , Interleukin-17/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , Autoantigens/genetics , Biomarkers , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunophenotyping , Mice , Mice, Knockout , Mice, Transgenic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL