Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.582
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 289-316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277691

ABSTRACT

The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.


Subject(s)
Intestinal Mucosa , Intraepithelial Lymphocytes , Humans , Animals , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Homeostasis , Receptors, Antigen, T-Cell/metabolism , Intestines/immunology
2.
Annu Rev Immunol ; 42(1): 427-53, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360547

ABSTRACT

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.


Subject(s)
AIRE Protein , Autoimmunity , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Thymus Gland/immunology , Thymus Gland/metabolism , Mutation , Immune Tolerance , Epithelial Cells/metabolism , Epithelial Cells/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism
3.
Annu Rev Immunol ; 39: 19-49, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33428454

ABSTRACT

Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Animals , Graft vs Host Disease/etiology , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Transplantation Conditioning , Transplantation, Homologous
4.
Annu Rev Immunol ; 37: 377-403, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026410

ABSTRACT

The gut-associated lymphoid tissue (GALT) faces a considerable challenge. It encounters antigens derived from an estimated 1014 commensal microbes and greater than 30 kg of food proteins yearly. It must distinguish these harmless antigens from potential pathogens and mount the appropriate host immune response. Local and systemic hyporesponsiveness to dietary antigens, classically referred to as oral tolerance, comprises a distinct complement of adaptive cellular and humoral immune responses. It is increasingly evident that a functional epithelial barrier engaged in intimate interplay with innate immune cells and the resident microbiota is critical to establishing and maintaining oral tolerance. Moreover, innate immune cells serve as a bridge between the microbiota, epithelium, and the adaptive immune system, parlaying tonic microbial stimulation into signals critical for mucosal homeostasis. Dysregulation of gut homeostasis and the subsequent disruption of tolerance therefore have clinically significant consequences for the development of food allergy.


Subject(s)
Dysbiosis/immunology , Food Hypersensitivity/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Administration, Oral , Allergens/immunology , Animals , Food , Food Hypersensitivity/microbiology , Homeostasis , Humans , Immune Tolerance , Immunity, Innate , Intestinal Mucosa/microbiology
5.
Annu Rev Immunol ; 37: 405-437, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30673535

ABSTRACT

Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.


Subject(s)
Disease Resistance/immunology , Immunity, Innate , Infections/immunology , Microbiota/immunology , Animals , Host-Pathogen Interactions , Humans , Immune Tolerance , Immunomodulation
6.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026411

ABSTRACT

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/immunology , Inflammation/microbiology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/microbiology , Animals , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Homeostasis , Humans , Immune Tolerance , Immunomodulation , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology
7.
Annu Rev Immunol ; 36: 247-277, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29328785

ABSTRACT

The liver is a key, frontline immune tissue. Ideally positioned to detect pathogens entering the body via the gut, the liver appears designed to detect, capture, and clear bacteria, viruses, and macromolecules. Containing the largest collection of phagocytic cells in the body, this organ is an important barrier between us and the outside world. Importantly, as portal blood also transports a large number of foreign but harmless molecules (e.g., food antigens), the liver's default immune status is anti-inflammatory or immunotolerant; however, under appropriate conditions, the liver is able to mount a rapid and robust immune response. This balance between immunity and tolerance is essential to liver function. Excessive inflammation in the absence of infection leads to sterile liver injury, tissue damage, and remodeling; insufficient immunity allows for chronic infection and cancer. Dynamic interactions between the numerous populations of immune cells in the liver are key to maintaining this balance and overall tissue health.


Subject(s)
Immune System Phenomena , Liver/immunology , Liver/metabolism , Adaptive Immunity , Animals , Hepatitis, Viral, Human/immunology , Hepatitis, Viral, Human/metabolism , Hepatitis, Viral, Human/virology , Humans , Immune Tolerance , Immunity, Innate , Liver/blood supply , Liver/cytology , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology
8.
Annu Rev Immunol ; 36: 339-357, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29356584

ABSTRACT

Maintenance of immunological self-tolerance requires lymphocytes carrying self-reactive antigen receptors to be selectively prevented from mounting destructive or inflammatory effector responses. Classically, self-tolerance is viewed in terms of the removal, editing, or silencing of B and T cells that have formed self-reactive antigen receptors during their early development. However, B cells activated by foreign antigen can enter germinal centers (GCs), where they further modify their antigen receptor by somatic hypermutation (SHM) of their immunoglobulin genes. The inevitable emergence of activated, self-reactive GC B cells presents a unique challenge to the maintenance of self-tolerance that must be rapidly countered to avoid autoantibody production. Here we discuss current knowledge of the mechanisms that enforce B cell self-tolerance, with particular focus on the control of self-reactive GC B cells. We also consider how self-reactive GC B cells can escape self-tolerance to initiate autoantibody production or instead be redeemed via SHM and used in productive antibody responses.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , Germinal Center/immunology , Animals , Autoantibodies/immunology , Autoantigens/immunology , B-Lymphocytes/metabolism , Germinal Center/metabolism , Humans , Immune Tolerance , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Plasma Cells/immunology , Plasma Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
9.
Annu Rev Immunol ; 35: 85-118, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28226225

ABSTRACT

Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.


Subject(s)
Epithelial Cells/metabolism , T-Lymphocytes/physiology , Thymus Gland/pathology , Animals , Autoimmunity , Cell Differentiation , Epithelial Cells/immunology , Forkhead Transcription Factors/metabolism , Humans , Immune Tolerance , Thymus Gland/immunology , Transcription Factors/metabolism , AIRE Protein
10.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968937

ABSTRACT

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.

11.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37327784

ABSTRACT

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Subject(s)
Gasdermins , Neoplasm Proteins , Mice , Animals , Caspase 3/metabolism , Neoplasm Proteins/metabolism , Pyroptosis , Intestine, Small/metabolism , Immune Tolerance
12.
Cell ; 185(14): 2542-2558.e18, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35714609

ABSTRACT

Medullary thymic epithelial cells (mTECs) ectopically express thousands of peripheral-tissue antigens (PTAs), which drive deletion or phenotypic diversion of self-reactive immature T cells during thymic differentiation. Failure of PTA expression causes multiorgan autoimmunity. By assaying chromatin accessibility in individual mTECs, we uncovered signatures of lineage-defining transcription factors (TFs) for skin, lung, liver, and intestinal cells-including Grhl, FoxA, FoxJ1, Hnf4, Sox8, and SpiB-in distinct mTEC subtypes. Transcriptomic and histologic analyses showed that these subtypes, which we collectively term mimetic cells, expressed PTAs in a biologically logical fashion, mirroring extra-thymic cell types while maintaining mTEC identity. Lineage-defining TFs bound to mimetic-cell open chromatin regions and were required for mimetic cell accumulation, whereas the tolerogenic factor Aire was partially and variably required. Expression of a model antigen in mimetic cells sufficed to induce cognate T cell tolerance. Thus, mTECs co-opt lineage-defining TFs to drive mimetic cell accumulation, PTA expression, and self-tolerance.


Subject(s)
Epithelial Cells , T-Lymphocytes , Animals , Antigens , Cell Differentiation , Chromatin/metabolism , Epithelial Cells/metabolism , Mice , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Cell ; 185(11): 1924-1942.e23, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35525247

ABSTRACT

For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.


Subject(s)
Lymph Nodes , Melanoma , Animals , Immune Tolerance , Immunotherapy , Lymphatic Metastasis/pathology , Melanoma/pathology , Mice
14.
Cell ; 184(15): 3998-4015.e19, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34157302

ABSTRACT

Foxp3+ T regulatory (Treg) cells promote immunological tumor tolerance, but how their immune-suppressive function is regulated in the tumor microenvironment (TME) remains unknown. Here, we used intravital microscopy to characterize the cellular interactions that provide tumor-infiltrating Treg cells with critical activation signals. We found that the polyclonal Treg cell repertoire is pre-enriched to recognize antigens presented by tumor-associated conventional dendritic cells (cDCs). Unstable cDC contacts sufficed to sustain Treg cell function, whereas T helper cells were activated during stable interactions. Contact instability resulted from CTLA-4-dependent downregulation of co-stimulatory B7-family proteins on cDCs, mediated by Treg cells themselves. CTLA-4-blockade triggered CD28-dependent Treg cell hyper-proliferation in the TME, and concomitant Treg cell inactivation was required to achieve tumor rejection. Therefore, Treg cells self-regulate through a CTLA-4- and CD28-dependent feedback loop that adjusts their population size to the amount of local co-stimulation. Its disruption through CTLA-4-blockade may off-set therapeutic benefits in cancer patients.


Subject(s)
CTLA-4 Antigen/metabolism , Feedback, Physiological , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigen-Presenting Cells/immunology , CD28 Antigens/metabolism , Cell Proliferation , Dendritic Cells/immunology , Green Fluorescent Proteins/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Interleukin-2/metabolism , Ligands , Lymph Nodes/metabolism , Lymphocyte Activation/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Neoplasms/pathology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Tumor Microenvironment
15.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32380006

ABSTRACT

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Subject(s)
Dendritic Cells/immunology , Interferon Type I/immunology , Microbiota/immunology , Adaptive Immunity/immunology , Adaptive Immunity/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/microbiology , Female , Male , Mice , Mice, Inbred C57BL , Microbiota/physiology , Receptor, Interferon alpha-beta/metabolism , Signal Transduction/immunology
16.
Cell ; 180(4): 688-702.e13, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32084340

ABSTRACT

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Machine Learning , Thiadiazoles/pharmacology , Acinetobacter baumannii/drug effects , Animals , Anti-Bacterial Agents/chemistry , Cheminformatics/methods , Clostridioides difficile/drug effects , Databases, Chemical , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiadiazoles/chemistry
17.
Cell ; 182(5): 1125-1139.e18, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32822574

ABSTRACT

Maternal decidual NK (dNK) cells promote placentation, but how they protect against placental infection while maintaining fetal tolerance is unclear. Here we show that human dNK cells highly express the antimicrobial peptide granulysin (GNLY) and selectively transfer it via nanotubes to extravillous trophoblasts to kill intracellular Listeria monocytogenes (Lm) without killing the trophoblast. Transfer of GNLY, but not other cell death-inducing cytotoxic granule proteins, strongly inhibits Lm in human placental cultures and in mouse and human trophoblast cell lines. Placental and fetal Lm loads are lower and pregnancy success is greatly improved in pregnant Lm-infected GNLY-transgenic mice than in wild-type mice that lack GNLY. This immune defense is not restricted to pregnancy; peripheral NK (pNK) cells also transfer GNLY to kill bacteria in macrophages and dendritic cells without killing the host cell. Nanotube transfer of GNLY allows dNK to protect against infection while leaving the maternal-fetal barrier intact.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Bacteria/immunology , Cell Movement/immunology , Killer Cells, Natural/immunology , Trophoblasts/immunology , Animals , Cell Line , Cell Line, Tumor , Dendritic Cells/immunology , Female , HeLa Cells , Humans , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Placenta/immunology , Placenta/microbiology , Pregnancy , Rats , THP-1 Cells , Trophoblasts/microbiology
18.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32610084

ABSTRACT

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Subject(s)
Adipose Tissue, Brown/metabolism , Interleukin-6/metabolism , Stress, Psychological , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Brain/metabolism , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Gluconeogenesis , Hyperglycemia/metabolism , Hyperglycemia/pathology , Interleukin-6/blood , Interleukin-6/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Adrenergic, beta-3/metabolism , Receptors, Interleukin-6/metabolism , Uncoupling Protein 1/deficiency , Uncoupling Protein 1/genetics
19.
Cell ; 178(5): 1231-1244.e11, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31402172

ABSTRACT

Growth and differentiation factor 15 (GDF15) is an inflammation-associated hormone with poorly defined biology. Here, we investigated the role of GDF15 in bacterial and viral infections. We found that inflammation induced GDF15, and that GDF15 was necessary for surviving both bacterial and viral infections, as well as sepsis. The protective effects of GDF15 were largely independent of pathogen control or the magnitude of inflammatory response, suggesting a role in disease tolerance. Indeed, we found that GDF15 was required for hepatic sympathetic outflow and triglyceride metabolism. Failure to defend the lower limit of plasma triglyceride levels was associated with impaired cardiac function and maintenance of body temperature, effects that could be rescued by exogenous administration of lipids. Together, we show that GDF15 coordinates tolerance to inflammatory damage through regulation of triglyceride metabolism.


Subject(s)
Growth Differentiation Factor 15/metabolism , Liver/metabolism , Sepsis/pathology , Animals , Antibodies/pharmacology , Disease Models, Animal , Growth Differentiation Factor 15/blood , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/immunology , Heart/drug effects , Heart/virology , Humans , Lipid Metabolism/drug effects , Lipopolysaccharides/toxicity , Liver/drug effects , Mice , Mice, Inbred C57BL , Norepinephrine/metabolism , Orthomyxoviridae/pathogenicity , Poly I-C/toxicity , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Sepsis/blood , Sepsis/mortality , Survival Rate , Triglycerides/blood , Triglycerides/metabolism , Troponin I/blood , Tumor Necrosis Factor-alpha/blood
20.
Annu Rev Cell Dev Biol ; 36: 511-528, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32634325

ABSTRACT

Pediatric allergic disease is a significant health concern worldwide, and the prevalence of childhood eczema, asthma, allergic rhinitis, and food allergy continues to increase. Evidence to support specific interventions for the prevention of eczema, asthma, and allergic rhinitis is limited, and no consensus on prevention strategies has been reached. Randomized controlled trials investigating the prevention of food allergy via oral tolerance induction and the early introduction of allergenic foods have been successful in reducing peanut and egg allergy prevalence. Infant weaning guidelines in the United Sates were recently amended to actively encourage the introduction of peanut for prevention of peanut allergy.


Subject(s)
Food Hypersensitivity/immunology , Immune Tolerance , Animals , Child , Humans , Immunotherapy , Models, Biological , Peanut Hypersensitivity/immunology , Practice Guidelines as Topic
SELECTION OF CITATIONS
SEARCH DETAIL