Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.234
Filter
Add more filters

Publication year range
1.
Plant J ; 119(5): 2402-2422, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38990624

ABSTRACT

Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.


Subject(s)
Corn Oil , Fatty Acids , Zea mays , Zea mays/genetics , Zea mays/metabolism , Corn Oil/metabolism , Corn Oil/genetics , Fatty Acids/metabolism , Genomics/methods , Vitamin E/metabolism , Oleic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/chemistry , Palmitic Acid/metabolism , Provitamins/metabolism , Alleles , Plant Breeding/methods , Microsatellite Repeats/genetics
2.
Mol Biol Evol ; 41(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39238368

ABSTRACT

Insect herbivores frequently cospeciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host-plant species, Metrosideros polymorpha within the last ∼5 MY. Using 16S rRNA sequencing, we investigated the bacterial microbiomes of 19 Pariaconus species and identified distinct symbiont profiles associated with specific host-plant ecologies. Phylogenetic analyses and metagenomic reconstructions revealed significant differences in microbial diversity and functions among psyllids with different host-plant ecologies. Within a few millions of years, Pariaconus species convergently evolved the closed-gall habit twice. This shift to enclosed galls coincided with the loss of the Morganella-like symbiont that provides the essential amino acid arginine to free-living and open-gall sister species. After the Pariaconus lineage left Kauai and colonized younger islands, both open- and closed-gall species lost the Dickeya-like symbiont. This symbiont is crucial for synthesizing essential amino acids (phenylalanine, tyrosine, and lysine) as well as B vitamins in free-living species. The recurrent loss of these symbionts in galling species reinforces evidence that galls are nutrient sinks and, combined with the rapidity of the evolutionary timeline, highlights the dynamic role of insect-symbiont relationships during the diversification of feeding ecologies. We propose new Candidatus names for the novel Morganella-like and Dickeya-like symbionts.


Subject(s)
Hemiptera , Herbivory , Symbiosis , Animals , Hemiptera/microbiology , RNA, Ribosomal, 16S/genetics , Hawaii , Phylogeny , Biological Evolution , Microbiota
3.
FASEB J ; 38(18): e70025, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39279493

ABSTRACT

Extracellular hydrolysis of the phosphate esters of B vitamins (B1, B2, and B6) is crucial for their cellular uptake and metabolism. Although a few zinc-dependent enzymes have been implicated in these processes, their exact mechanisms of action remain largely unknown. This study investigated the potential involvement of phosphate group hydrolyzing enzymes in the hydrolysis of B vitamin phosphate esters. We evaluated enzyme activity in membrane lysates prepared from cells transiently transfected with these enzymes or those endogenously expressing them. Specifically, we investigated how zinc deficiency affects the rate of hydrolysis of B vitamin phosphate esters in cellular lysates. Assessment of the activities of zinc-dependent ectoenzymes in the lysates prepared from cells cultured in zinc-deficient conditions and in the serum of rats fed zinc-deficient diets revealed that zinc deficiency reduced the extracellular hydrolysis activity of B vitamin phosphate esters. Furthermore, our findings explain the similarities between several symptoms of B vitamin and zinc deficiencies. Collectively, this study provides novel insights into the diverse symptoms of zinc deficiency and could guide the development of appropriate clinical strategies.


Subject(s)
Esters , Zinc , Animals , Zinc/metabolism , Zinc/deficiency , Rats , Hydrolysis , Esters/metabolism , Humans , Male , Vitamin B Complex/metabolism , Phosphates/metabolism , Phosphates/deficiency , Vitamin B 6/metabolism , Rats, Wistar
4.
Plant J ; 114(5): 1014-1036, 2023 06.
Article in English | MEDLINE | ID: mdl-36861364

ABSTRACT

Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.


Subject(s)
Coenzymes , Vitamins , Humans , Coenzymes/metabolism , Vitamins/metabolism , Plants/metabolism , Plant Physiological Phenomena
5.
Curr Issues Mol Biol ; 46(9): 9286-9297, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39329901

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are immature cells with an immunosuppressive function. MDSCs have been related to inflammation in many settings, including infections, transplantation, obesity, aging, or cancer. In oncological settings, MDSCs participate in tumor immunoescape, growth, and metastasis. Certain nutrients can modify chronic inflammation by their interaction with MDSCs. Therefore, the possible influence of certain nutrients on immune surveillance by their actions on MDSCs and how this may affect the prognosis of cancer patients were evaluated in this scoping review. We identified seven papers, six of which were murine model studies and only one was a human clinical trial. Globally, a significant reduction in cancer growth and progression was observed after achieving a reduction in both MDSCs and their immunosuppressive ability with nutrients such as selected vegetables, icaritin, retinoic acid, curdlan, active vitamin D, soy isoflavones, and green tea. In conclusion, the consumption of certain nutrients may have effects on MDSCs, with beneficial results not only in the prevention of tumor development and growth but also in improving patients' response.

6.
Cancer ; 130(14): 2538-2551, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38520382

ABSTRACT

BACKGROUND: Androgen deprivation therapy (ADT) inhibits prostate cancer growth. However, ADT causes loss of bone mineral density (BMD) and an increase in fracture risk; effective interventions for ADT-induced bone loss are limited. METHODS: A phase 2 randomized controlled trial investigated the feasibility, safety, and preliminary efficacy of high-dose weekly vitamin D (HDVD, 50,000 IU/week) versus placebo for 24 weeks in patients with prostate cancer receiving ADT, with all subjects receiving 600 IU/day vitamin D and 1000 mg/day calcium. Participants were ≥60 years (mean years, 67.7), had a serum 25-hydroxyvitamin D level <32 ng/mL, and initiated ADT within the previous 6 months. At baseline and after intervention, dual-energy x-ray absorptiometry was used to assess BMD, and levels of bone cell, bone formation, and resorption were measured. RESULTS: The HDVD group (N = 29) lost 1.5% BMD at the total hip vs. 4.1% for the low-dose group (N = 30; p = .03) and 1.7% BMD at the femoral neck vs. 4.4% in the low-dose group (p = .06). Stratified analyses showed that, for those with baseline 25-hydroxyvitamin D level <27 ng/mL, the HDVD group lost 2.3% BMD at the total hip vs 7.1% for the low-dose group (p < .01). Those in the HDVD arm showed significant changes in parathyroid hormone (p < .01), osteoprotegerin (p < 0.01), N-terminal telopeptide of type 1 collagen (p < 0.01) and C-terminal telopeptide of type 1 collagen (p < 0.01). No difference in adverse events or toxicity was noted between the groups. CONCLUSIONS: HDVD supplementation significantly reduced hip and femoral neck BMD loss, especially for patients with low baseline serum 25-hydroxyvitamin D levels, although demonstrating safety and feasibility in prostate cancer patients on ADT.


Subject(s)
Androgen Antagonists , Bone Density , Prostatic Neoplasms , Vitamin D , Humans , Male , Prostatic Neoplasms/drug therapy , Vitamin D/blood , Vitamin D/analogs & derivatives , Vitamin D/administration & dosage , Aged , Androgen Antagonists/adverse effects , Androgen Antagonists/administration & dosage , Androgen Antagonists/therapeutic use , Bone Density/drug effects , Middle Aged , Osteoporosis/chemically induced , Osteoporosis/prevention & control
7.
Br J Haematol ; 204(3): 1047-1053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087805

ABSTRACT

Sickle cell disease (SCD) is associated with high rates of undernutrition and stunting. Undernutrition in combination with chronic haemolysis may lead to deficiencies in micronutrients necessary for erythropoiesis. Here we examined selected levels of ferritin, vitamins B2 , B6 , B9 and B12 , and vitamin C that were measured in blood samples from 820 SCD patients from Tanzania with no history of hospital admission, infections or painful episodes in the previous 30 days. We studied children (0-8 years), early adolescents (9-14 years), late adolescents (15-17 years) and adults (≥18 years). Severely low levels of vitamin B12 were observed across the four age groups. Despite the lowered vitamin B12 concentrations, total homocysteine concentrations were normal across both genders in all age groups. We found no significant gender-related differences between the other measured micronutrients. In this large SCD population, spanning the whole life cycle, a low level of vitamin B12 was consistently found across both genders and all age groups. Given the pivotal role of vitamin B12 in cellular metabolism, particularly in erythropoiesis, more studies are required to unravel how to better detect clinically relevant vitamin B12 deficiency among SCD patients, and thus to identify more precisely those who need supplementation of vitamin B12 .


Subject(s)
Anemia, Sickle Cell , Malnutrition , Adult , Child , Adolescent , Humans , Male , Female , Vitamin B 12 , Folic Acid , Tanzania , Cohort Studies , Vitamins , Micronutrients
8.
Gastroenterology ; 165(3): 670-681, 2023 09.
Article in English | MEDLINE | ID: mdl-37263307

ABSTRACT

BACKGROUND & AIMS: The cause of Crohn's disease (CD) is unknown, but the current hypothesis is that microbial or environmental factors induce gut inflammation in genetically susceptible individuals, leading to chronic intestinal inflammation. Case-control studies of patients with CD have cataloged alterations in the gut microbiome composition; however, these studies fail to distinguish whether the altered gut microbiome composition is associated with initiation of CD or is the result of inflammation or drug treatment. METHODS: In this prospective cohort study, 3483 healthy first-degree relatives (FDRs) of patients with CD were recruited to identify the gut microbiome composition that precedes the onset of CD and to what extent this composition predicts the risk of developing CD. We applied a machine learning approach to the analysis of the gut microbiome composition (based on 16S ribosomal RNA sequencing) to define a microbial signature that associates with future development of CD. The performance of the model was assessed in an independent validation cohort. RESULTS: In the validation cohort, the microbiome risk score (MRS) model yielded a hazard ratio of 2.24 (95% confidence interval, 1.03-4.84; P = .04), using the median of the MRS from the discovery cohort as the threshold. The MRS demonstrated a temporal validity by capturing individuals that developed CD up to 5 years before disease onset (area under the curve > 0.65). The 5 most important taxa contributing to the MRS included Ruminococcus torques, Blautia, Colidextribacter, an uncultured genus-level group from Oscillospiraceae, and Roseburia. CONCLUSION: This study is the first to demonstrate that gut microbiome composition is associated with future onset of CD and suggests that gut microbiome is a contributor in the pathogenesis of CD.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Inflammation , Humans , Inflammation/genetics , Prospective Studies , Faecalibacterium , Leukocyte L1 Antigen Complex
9.
J Transl Med ; 22(1): 847, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294611

ABSTRACT

SCOPE: The underlying medical conditions and gut dysbiosis is known to influence COVID-19 severity in high-risk patients. The current review proposed the optimal usage of nutraceuticals & pharmacological interventions can help regulate the protective immune response and balance the regulatory functionality of gut microbiota. Many studies have revealed that the probiotic interventions viz., Lactobacillus rhamnosus, L. plantarum & other bacterial spp. reduce IFNγ & TNF-α and increase IL-4 & IL-10 secretions to control the immunostimulatory effects in upper respiratory tract infection. Dietary fibres utilized by beneficial microbiota and microbial metabolites can control the NF-kB regulation. Vitamin C halts the propagation of pathogens and vitamin D and A modulate the GM. Selenium and Flavonoids also control the redox regulations. Interferon therapy can antagonize the viral replications, while corticosteroids may reduce the death rates. BCG vaccine reprograms the monocytes to build trained immunity. Bifidobacterium and related microbes were found to increase the vaccine efficacy. Vaccines against COVID-19 and season flu also boost the immunity profile for robust protection. Over all, the collective effects of these therapeutics could help increase the opportunities for faster recovery from infectious diseases. CONCLUSION: The nutraceutical supplements and pharmacological medicines mediate the modulatory functionalities among beneficial microbes of gut, which in turn eliminate pathogens, harmonize the activity of immune cells to secrete essential regulatory molecular receptors and adaptor proteins establishing the homeostasis in the body organs through essential microbiome. Therefore, the implementation of this methodology could control the severity events during clinical sickness and reduce the mortalities.


Subject(s)
COVID-19 , Dietary Supplements , Gastrointestinal Microbiome , SARS-CoV-2 , Humans , COVID-19/immunology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , SARS-CoV-2/immunology , COVID-19 Drug Treatment , Probiotics/therapeutic use , Virus Diseases/immunology , Virus Diseases/drug therapy , Immunity/drug effects
10.
Am J Kidney Dis ; 83(3): 370-385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37879527

ABSTRACT

All vitamins play essential roles in various aspects of body function and systems. Patients with chronic kidney disease (CKD), including those receiving dialysis, may be at increased risk of developing vitamin deficiencies due to anorexia, poor dietary intake, protein energy wasting, restricted diet, dialysis loss, or inadequate sun exposure for vitamin D. However, clinical manifestations of most vitamin deficiencies are usually subtle or undetected in this population. Testing for circulating levels is not undertaken for most vitamins except folate, B12, and 25-hydroxyvitamin D because assays may not be available or may be costly to perform and do not always correlate with body stores. The last systematic review through 2016 was performed for the Kidney Disease Outcome Quality Initiative (KDOQI) 2020 Nutrition Guideline update, so this article summarizes the more recent evidence. We review the use of vitamins supplementation in the CKD population. To date there have been no randomized trials to support the benefits of any vitamin supplementation for kidney, cardiovascular, or patient-centered outcomes. The decision to supplement water-soluble vitamins should be individualized, taking account the patient's dietary intake, nutritional status, risk of vitamins deficiency/insufficiency, CKD stage, comorbid status, and dialysis loss. Nutritional vitamin D deficiency should be corrected, but the supplementation dose and formulation need to be personalized, taking into consideration the degree of 25-hydroxyvitamin D deficiency, parathyroid hormone levels, CKD stage, and local formulation. Routine supplementation of vitamins A and E is not supported due to potential toxicity. Although more trial data are required to elucidate the roles of vitamin supplementation, all patients with CKD should undergo periodic assessment of dietary intake and aim to receive various vitamins through natural food sources and a healthy eating pattern that includes vitamin-dense foods.


Subject(s)
Avitaminosis , Renal Insufficiency, Chronic , Vitamin D Deficiency , Humans , Vitamins/therapeutic use , Vitamin D , Dietary Supplements , Renal Insufficiency, Chronic/complications , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/etiology , Vitamin A , Avitaminosis/epidemiology , Avitaminosis/complications , Vitamin K
11.
J Biol Inorg Chem ; 29(3): 375-383, 2024 04.
Article in English | MEDLINE | ID: mdl-38289478

ABSTRACT

Previous studies reported that Pb exposure causes a negative association with delta-aminolevulinic acid dehydratase activity (δ-ALAD), but the impact of Pb exposure (dose and time), B vitamin deficiencies, and lifestyle factors needs to be explored. In this study, the impact of Pb exposure, B vitamin deficiencies, and lifestyle factors on δ-ALAD activity among workers exposed to Pb from the Pb-recycling process was evaluated. Blood lead levels (BLLs), B vitamins (B6, B9, and B12), hematological factors (Hb% and HCT), lifestyle factors, and δ-ALAD activity was assessed in 170 male Pb-exposed workers engaged in the Pb recycling process. BLLs are estimated using the ICP-OES method. B vitamins in serum samples from workers were determined using the ELISA method. The δ-ALAD activity in whole blood samples was determined using the spectrophotometer method. The lifestyle factors were collected using a standard questionnaire. The δ-ALAD activity was significantly decreased in workers with the habits of alcohol use, tobacco consumption, hematocrit < 41%, mild and moderate categories of anemia, vitamin B6 and B12 deficiency, and BLL categories of 10-30, 30-50, and > 50 µg/dL. Multiple regression analysis revealed that the independent variables of alcohol consumption (ß = - 0.170; P = 0.025), BLLs (ß = - 0.589; P = 0.001) and Hb% (ß = 0.183; P = 0.001) significantly influenced the δ-ALAD activity with 44.2% (R2 = 0.442). Among the workers exposed to Pb from the Pb recycling plant, δ-ALAD activity was considerably reduced by Pb exposure, B vitamin deficiency, hematological parameters, and lifestyle factors.


Subject(s)
Lead , Occupational Exposure , Porphobilinogen Synthase , Humans , Porphobilinogen Synthase/metabolism , Porphobilinogen Synthase/blood , Male , Lead/blood , Adult , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Vitamin B Deficiency/blood , Recycling , Middle Aged , Vitamin B Complex/blood
12.
Osteoporos Int ; 35(9): 1645-1659, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38953947

ABSTRACT

Our study showed that B vitamins did not have significant effect on fracture incidence, bone mineral density, and bone turnover markers. However, the research data of B vitamins on bone mineral density and bone turnover markers are limited, and more clinical trials are needed to draw sufficient conclusions. PURPOSE: The objective of this study was to identify the efficacy of B vitamin (VB) (folate, B6, and B12) supplements on fracture incidence, bone mineral density (BMD), and bone turnover markers (BTMs). METHODS: A comprehensive search was performed in PubMed, MEDLINE, EMBASE, Cochrane databases, and ClinicalTrials.gov up to September 4, 2023. The risk of bias was assessed according to Cochrane Handbook and the quality of evidence was assessed according to the GRADE system. We used trial sequential analysis (TSA) to assess risk of random errors and Stata 14 to conduct sensitivity and publication bias analyses. RESULTS: Data from 14 RCTs with 34,700 patients were extracted and analyzed. The results showed that VBs did not significantly reduce the fracture incidence (RR, 1.06; 95% CI, 0.95 - 1.18; p = 0.33; I2 = 40%) and did not affect BMD in lumbar spine and femur neck. VBs had no significant effect on bone specific alkaline phase (a biomarker for bone formation), but could increase the serum carboxy-terminal peptide (a biomarker for bone resorption) (p = 0.009; I2 = 0%). The TSA showed the results of VBs on BMD and BTMs may not be enough to draw sufficient conclusions due to the small number of sample data included and needed to be demonstrated in more clinical trials. The inability of VBs to reduce fracture incidence has been verified by TSA as sufficient. Sensitivity analysis and publication bias assessment proved that our meta-analysis results were stable and reliable, with no significant publication bias. CONCLUSIONS: Available evidence from RCTs does not support VBs can effectively influence osteoporotic fracture risk, BMD, and BTMs. TRIAL REGISTRATION: PROSPERO registration number: CRD42023427508.


Subject(s)
Bone Density , Bone Remodeling , Osteoporotic Fractures , Vitamin B Complex , Humans , Biomarkers/blood , Bone Density/physiology , Bone Density/drug effects , Bone Remodeling/physiology , Bone Remodeling/drug effects , Dietary Supplements , Folic Acid/therapeutic use , Incidence , Osteoporotic Fractures/prevention & control , Osteoporotic Fractures/epidemiology , Randomized Controlled Trials as Topic , Vitamin B 12/therapeutic use , Vitamin B 12/blood , Vitamin B 6/therapeutic use , Vitamin B Complex/therapeutic use
13.
Eur J Clin Invest ; 54(6): e14165, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38291560

ABSTRACT

BACKGROUND AND AIM: Stroke represents a significant public health challenge, necessitating the exploration of preventive measures. This network meta-analysis aimed to assess the efficacy of different vitamin treatments compared to a placebo in preventing stroke. METHODS: A systematic electronic search in databases including PubMed, EmBASE, Web of Science, clinicaltrials.gov, and Google Scholar until 31 May 2023 was conducted, to identify published studies investigating the association between vitamin intake and the risk of stroke. Pooled risk ratio (RR) with 95% confidence intervals (CIs) was calculated using a frequentist network meta-analysis. Furthermore, we ranked vitamins based on p-scores, facilitating a comparative assessment of their effectiveness in preventing stroke. RESULTS: A total of 56 studies, including 17 randomized controlled trials (RCTs) and 39 cohort studies were analyzed. Direct estimates obtained from network meta-analysis, we found that vitamin A (RR: .81 [.72-.91]), vitamin B-complex (RR: .85 [.74-.97]), vitamin B6 (RR: 79 [.68-.92]), folate (RR: .86 [.75-.97]), vitamin C (RR: .77 [.70-.85]) and vitamin D (RR: .73 [.64-.83]) were significantly associated with a decreased stroke risk. However, no significant association was observed for vitamin B2, vitamin B12, and vitamin E. Subsequent to network meta-analysis, vitamins were ranked in decreasing order of their efficacy in stroke prevention based on p-score, with vitamin D (p-score = .91), vitamin C (p-score = .79), vitamin B6 (p-score = .70), vitamin A (p-score = .65), vitamin B-complex (p-score = .53), folate (p-score = .49), vitamin B2 (p-score = .39), vitamin E (p-score = .28), vitamin B12 (.13) and placebo (.10). CONCLUSION: Our study has established noteworthy connections between vitamin A, vitamin B-complex, vitamin B6, folate, vitamin C, and vitamin D in the realm of stroke prevention. These findings add substantial weight to the accumulating evidence supporting the potential advantages of vitamin interventions in mitigating the risk of stroke. However, to solidify and validate these observations, additional research is imperative. Well-designed clinical trials or cohort studies are needed to further explore these associations and formulate clear guidelines for incorporating vitamin supplementation into effective stroke prevention strategies.


Subject(s)
Ascorbic Acid , Folic Acid , Network Meta-Analysis , Stroke , Vitamin A , Vitamin B 6 , Vitamin B Complex , Vitamin D , Vitamin E , Vitamins , Humans , Vitamins/therapeutic use , Stroke/prevention & control , Stroke/epidemiology , Vitamin B Complex/therapeutic use , Folic Acid/therapeutic use , Vitamin D/therapeutic use , Vitamin E/therapeutic use , Ascorbic Acid/therapeutic use , Vitamin A/therapeutic use , Vitamin B 6/therapeutic use , Randomized Controlled Trials as Topic , Dietary Supplements
14.
Eur J Clin Invest ; 54(4): e14158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214126

ABSTRACT

BACKGROUND: Metabolomic assessment of the transsulfuration and folic acid biochemical pathways could lead to the identification of promising biomarkers of nitric oxide dysregulation and oxidative stress in rheumatoid arthritis (RA). METHODS: We conducted a systematic review and meta-analysis of transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6 , and vitamin B12 ) metabolites in RA patients in remission and healthy controls. Electronic databases were searched from inception to 15 July 2023 for relevant articles. We assessed the risk of bias using the JBI checklist and the certainty of evidence using GRADE. RESULTS: In 28 eligible studies, compared to controls, RA patients had significantly higher concentrations of homocysteine (standardized mean difference, SMD = 0.74, 95% CI 0.54-0.93, p < 0.001; low certainty of evidence) and methionine (SMD = 1.00, 95% CI 0.57-1.44, p < 0.001; low certainty) and lower concentrations of vitamin B6 (SMD = -6.62, 95% CI -9.65 to -3.60, p < 0.001; low certainty). By contrast, there were non-significant between-group differences in vitamin B12 and folic acid. In meta-regression and subgroup analysis, there were no associations between the effect size and several study and patient characteristics except for homocysteine (year of publication, C-reactive protein, triglycerides, and analytical method) and folic acid (biological matrix). CONCLUSIONS: The results of our study suggest that homocysteine, methionine, and vitamin B6 are promising biomarkers to assess nitric oxide dysregulation and oxidative stress in RA. (PROSPERO registration number: CRD42023461081).


Subject(s)
Arthritis, Rheumatoid , Folic Acid , Humans , Nitric Oxide , Vitamin B 12 , Vitamin B 6 , Methionine , Vitamins , Biomarkers , Homocysteine
15.
J Nutr ; 154(2): 314-324, 2024 02.
Article in English | MEDLINE | ID: mdl-38042352

ABSTRACT

The composition of human milk is influenced by storage and processing practices. The effects of thawing and warming practices on human milk composition remain poorly studied despite their prevalence in home, research, and donor milk bank settings. This review comprehensively examines the impact of different thawing and warming methods on nutritional and bioactive human milk components. While some components such as carbohydrates and minerals remain stable under most typical thawing and warming conditions, others, such as fat, immune proteins, bacterial and human cells, and peptide amine hormones, are sensitive to warming. This review has identified that the data on the effects of milk thawing and warming is limited and often contradictory. Given that numerous important components of milk are diminished during cold storage, it is important that thawing and warming practices do not lead to further loss of or alterations to beneficial milk components. Further work in this field will facilitate greater standardization of thawing methods among researchers and underpin recommendations for thawing and warming of expressed milk for parents.


Subject(s)
Milk Banks , Milk, Human , Humans , Milk, Human/chemistry , Carbohydrates , Minerals/analysis
16.
J Nutr ; 154(2): 341-353, 2024 02.
Article in English | MEDLINE | ID: mdl-38176457

ABSTRACT

In recent years, thousands of studies have demonstrated the importance of the gut microbiome for human health and its relationship with certain diseases. The search for new gut microbiome modulators has thus become an objective to beneficially alter the gut microbiome composition and/or metabolic activity, which may modify intestinal physiology. Growing evidence has shown that B-group vitamins might be considered as potential candidates as gut microbiome modulators. However, the relationship between the B-group vitamins and the gut microbiome remains largely unexplored. Studies have suggested that non-absorbed B-group vitamins administered orally can reach the distal intestine or even the colon where these vitamins may have potential health benefits for the host. Clinical trials supporting this effect are still limited. In this review, we discuss evidence regarding the modulatory effects of B-group vitamins on the gut microbiome with a focus on their potential role as prebiotic candidates.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Vitamin B Complex , Humans , Vitamin B Complex/pharmacology , Prebiotics
17.
J Nutr ; 154(2): 424-434, 2024 02.
Article in English | MEDLINE | ID: mdl-38122846

ABSTRACT

BACKGROUND: Identifying biological drivers of mammographic breast density (MBD), a strong risk factor for breast cancer, could provide insight into breast cancer etiology and prevention. Studies on dietary factors and MBD have yielded conflicting results. There are, however, very limited data on the associations of dietary biomarkers and MBD. OBJECTIVE: We aimed to investigate the associations of vitamins and related cofactor metabolites with MBD in premenopausal women. METHODS: We measured 37 vitamins and related cofactor metabolites in fasting plasma samples of 705 premenopausal women recruited during their annual screening mammogram at the Washington University School of Medicine, St. Louis, MO. Volpara was used to assess volumetric percent density (VPD), dense volume (DV), and nondense volume (NDV). We estimated the least square means of VPD, DV, and NDV across quartiles of each metabolite, as well as the regression coefficient of a metabolite in continuous scale from multiple covariate-adjusted linear regression. We corrected for multiple testing using the Benjamini-Hochberg procedure to control the false discover rate (FDR) at a 5% level. RESULTS: Participants' mean VPD was 10.5%. Two vitamin A metabolites (ß-cryptoxanthin and carotene diol 2) were positively associated, and one vitamin E metabolite (γ-tocopherol) was inversely associated with VPD. The mean VPD increased across quartiles of ß-cryptoxanthin (Q1 = 7.2%, Q2 = 7.7%, Q3 = 8.4%%, Q4 = 9.2%; P-trend = 1.77E-05, FDR P value = 1.18E-03). There was a decrease in the mean VPD across quartiles of γ-tocopherol (Q1 = 9.4%, Q2 = 8.1%, Q3 = 8.0%, Q4 = 7.8%; P -trend = 4.01E-03, FDR P value = 0.04). Seven metabolites were associated with NDV: 3 vitamin E (γ-CEHC glucuronide, δ-CEHC, and γ-tocopherol) and 1 vitamin C (gulonate) were positively associated, whereas 2 vitamin A (carotene diol 2 and ß-cryptoxanthin) and 1 vitamin C (threonate) were inversely associated with NDV. No metabolite was significantly associated with DV. CONCLUSION: We report novel associations of vitamins and related cofactor metabolites with MBD in premenopausal women.


Subject(s)
Breast Density , Breast Neoplasms , Female , Humans , Vitamins , Vitamin A , gamma-Tocopherol , Beta-Cryptoxanthin , Breast Neoplasms/etiology , Risk Factors , Vitamin K , Ascorbic Acid
18.
Arch Microbiol ; 206(4): 173, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492040

ABSTRACT

Using microalgal growth-promoting bacteria (MGPB) to improve the cultured microalga metabolism during biotechnological processes is one of the most promising strategies to enhance their benefits. Nonetheless, the culture condition effect used during the biotechnological process on MGPB growth and metabolism is key to ensure the expected positive bacterium growth and metabolism of microalgae. In this sense, the present research study investigated the effect of the synthetic biogas atmosphere (75% CH4-25% CO2) on metabolic and physiological adaptations of the MGPB Azospirillum brasilense by a microarray-based transcriptome approach. A total of 394 A. brasilense differentially expressed genes (DEGs) were found: 201 DEGs (34 upregulated and 167 downregulated) at 24 h and 193 DEGs (140 upregulated and 53 downregulated) under the same conditions at 72 h. The results showed a series of A. brasilense genes regulating processes that could be essential for its adaptation to the early stressful condition generated by biogas. Evidence of energy production is shown by nitrate/nitrite reduction and activation of the hypothetical first steps of hydrogenotrophic methanogenesis; signal molecule modulation is observed: indole-3-acetic acid (IAA), riboflavin, and vitamin B6, activation of Type VI secretion system responding to IAA exposure, as well as polyhydroxybutyrate (PHB) biosynthesis and accumulation. Moreover, an overexpression of ipdC, ribB, and phaC genes, encoding the key enzymes for the production of the signal molecule IAA, vitamin riboflavin, and PHB production of 2, 1.5 and 11 folds, respectively, was observed at the first 24 h of incubation under biogas atmosphere Overall, the ability of A. brasilense to metabolically adapt to a biogas atmosphere is demonstrated, which allows its implementation for generating biogas with high calorific values and the use of renewable energies through microalga biotechnologies.


Subject(s)
Azospirillum brasilense , Microalgae , Microalgae/genetics , Biofuels , Transcriptome , Indoleacetic Acids/metabolism , Gene Expression Profiling , Adaptation, Physiological/genetics , Riboflavin/genetics , Riboflavin/metabolism
19.
Article in English | MEDLINE | ID: mdl-38602571

ABSTRACT

Parkinson's disease (PD) has been linked to a vast array of vitamins among which vitamin B12 (Vit B12) is the most relevant and often investigated specially in the context of intrajejunal levodopa infusion therapy. Vit B12 deficiency, itself, has been reported to cause acute parkinsonism. Nevertheless, concrete mechanisms through which B12 deficiency interacts with PD in terms of pathophysiology, clinical manifestation and progression remains unclear. Recent studies have suggested that Vit B12 deficiency along with the induced hyperhomocysteinemia are correlated with specific PD phenotypes characterized with early postural instability and falls and more rapid motor progression, cognitive impairment, visual hallucinations and autonomic dysfunction. Specific clinical features such as polyneuropathy have also been linked to Vit B12 deficiency specifically in context of intrajejunal levodopa therapy. In this review, we explore the link between Vit B12 and PD in terms of physiopathology regarding dysfunctional neural pathways, neuropathological processes as well as reviewing the major clinical traits of Vit B12 deficiency in PD and Levodopa-mediated neuropathy. Finally, we provide an overview of the therapeutic effect of Vit B12 supplementation in PD and posit a practical guideline for Vit B12 testing and supplementation.

20.
Microb Cell Fact ; 23(1): 172, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867272

ABSTRACT

There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.


Subject(s)
Bacteria , Fatty Acids, Volatile , Gastrointestinal Microbiome , Minerals , Probiotics , Vitamins , Probiotics/metabolism , Humans , Vitamins/metabolism , Minerals/metabolism , Fatty Acids, Volatile/metabolism , Bacteria/metabolism , Symbiosis , Animals
SELECTION OF CITATIONS
SEARCH DETAIL