Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fish Shellfish Immunol ; 81: 135-149, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30017927

ABSTRACT

Two trials were conducted to determine the effects of dietary macroalgae Porphyra haitanensis on growth, immunity and intestinal microbiota of Litopenaeus vannamei. In trial 1, shrimp (mean initial wet weight about 0.64 g) were fed with seven diets (P0, P1, P2, P3, P4, P5 and P6) containing 0% (basal diet), 1%, 2%, 3%, 4%, 5% and 6% P. haitanensis in triplicate for 60 days. Growth performance (weight gain, WG; specific growth rate, SGR) of shrimp fed the P4 diet were significantly higher than that of shrimp fed P0, P5 and P6 diets (P < 0.05) but without significant differences with shrimp fed P1-P3 diets (P > 0.05). Hepatopancreas phenoloxidase (PO) activity of shrimp fed the P. haitanensis containing diets was significantly higher than that of shrimp fed the basal diet (P0) (P < 0.05). Total haemocyte count (THC) of shrimp fed basal diet (P0) was significantly lower than that of shrimp fed diets containing P. haitanensis. Our results declared that dietary P. haitanensis supplementation increases the abundance of beneficial bacterials such as Nitrosopumilus, Marinobacter or Bifidobacterium and reduces the abundance of harmful bacterias such as Vibrio, and especially pronounced in P4 diet treatment. In trial 2, a WSSV injection challenge test was conducted for 7-day after the rearing trial and shrimp survival was also compared among treatments. A sudden shrimp death was found from the 4th day, and values of survival of shrimp fed the P3-P4 diets were higher than that of shrimp fed other diets during 4-7 days challenge test. The immune response in trial 2 were characterized by higher superoxide dismutase activity (SOD) and PO activities, lower THC and higher HCT compared to levels found in trial 1. In conclusion, suitable dietary P. haitanensis could enhance the growth performance, antioxidant capacity and alter total bacterial numbers or microbial diversity of L. vannamei and furthermore reduce oxidative stress and immune depression challenged by WSSV injection stress, and the level of P. haitanensis supplemented in the diet should be between 2.51% and 3.14%.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Immunity, Innate , Penaeidae/growth & development , Porphyra , Animal Feed/analysis , Animals , Antioxidants/administration & dosage , Aquaculture , Hemocytes/metabolism , Oxidative Stress , Penaeidae/immunology , Penaeidae/microbiology , Superoxide Dismutase/metabolism
2.
MethodsX ; 6: 1617-1626, 2019.
Article in English | MEDLINE | ID: mdl-31360642

ABSTRACT

White spot syndrome virus (WSSV) is one of the most virulent pathogens of cultured penaeid shrimp. Several control strategies are used commonly to mitigate the economic losses caused by the pathogen, such as application of antiviral products at farm level. One of the most practical method for the screening of potential anti-WSSV products is through challenge tests. Therefore, it is essential to develop simple, reproducible and effective bioassays able to simulate specific mortality levels. The purpose of this study was to develop a simple and reproducible bioassay that simulate different mortality levels by varying the proportion of WSSV-infected and noninfected shrimp tissues administered to susceptible shrimp during a per os challenge test. This method mimics one of the natural transmission routes of WSSV infection in shrimp and could be applied to identify potential antiviral products to different cultured shrimp species susceptible to WSSV. Here we report: •A simple and economic method to evaluate therapeutic antiviral products against WSSV through a challenge test, that uses different biomass amounts of WSSV-infected papilla.•Allows to simulate a wide and reproducible range of mortalities observed in shrimp farms.•A challenge test that simulates one mode of natural WSSV infection in shrimp.

3.
Front Physiol ; 9: 1880, 2018.
Article in English | MEDLINE | ID: mdl-30687110

ABSTRACT

The study was conducted to compare and evaluate effects of four different macro-algaes on growth, immune response, and intestinal microbiota of Litopenaeus vannamei. In the rearing trial 1, shrimp were fed five diets containing four sources of macro-algaes for 8 weeks, named D1 (without macro-algae), D2 (Porphyra haitanensis), D3 (Undaria pinnatifida), D4 (Saccharina japonica), and D5 (Gracilaria lemaneiformis), respectively. Growth performance of shrimp in D5 diet was significantly higher than that of shrimp fed the control and D4 diet (P < 0.05); however, there is no significant difference among D2, D3, and D5 diets (P > 0.05). Apparent digestibility coefficients of dry matter from the D2, D3, and D5 diets were significantly higher than that from the control and D4 diets (P < 0.05). Supplementary macro-algaes enhanced hepatopancreas immunity through positively increasing total antioxidant status (TAS) and prophenoloxidase activity (ProPO), as well as up-regulating the hepatopancreas RNA expression of ProPO and IκBα and down-regulating the expression of transforming growth factor ß. Furthermore, dietary macro-algaes modified intestinal microbiota of L. vannamei, boosting the relative abundance of beneficial bacterial such as Bacteroidetes, Firmicutes, and Bacillaceae, and decreasing those detrimental bacterial such as Gammaproteobacteria and Vibrionaceae. In the white spot syndrome virus (WSSV) challenge trial, shrimps were injected for 6-day after the rearing trial. On the fourth day, shrimp death started to occur, and the mortality in D2, D3, and D5 diets was significantly lower than that in control and SJ diets during 4-6 challenged days (P < 0.05). Dietary macro-algaes ameliorated hepatopancreas damage in L. vannamei by increasing TAS and ProPO activities and decreasing SOD activity, inhibiting the lipid peroxidation (malondialdehyde), as well as regulating the immune-related genes expression. Taken together, dietary macro-algaes availably relieved enterohepatic oxidative damage by improving antioxidant ability and immunity and regulated intestinal microbiota in L. vannamei. These results indicated that G. lemaneiformis is the most suitable macro-algae and then followed by U. pinnatifida and P. haitanensis as the feed ingredient for L. vannamei.

SELECTION OF CITATIONS
SEARCH DETAIL