Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 716
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(28): e2303312120, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37410867

ABSTRACT

New properties and exotic quantum phenomena can form due to periodic nanotextures, including Moire patterns, ferroic domains, and topologically protected magnetization and polarization textures. Despite the availability of powerful tools to characterize the atomic crystal structure, the visualization of nanoscale strain-modulated structural motifs remains challenging. Here, we develop nondestructive real-space imaging of periodic lattice distortions in thin epitaxial films and report an emergent periodic nanotexture in a Mott insulator. Specifically, we combine iterative phase retrieval with unsupervised machine learning to invert the diffuse scattering pattern from conventional X-ray reciprocal-space maps into real-space images of crystalline displacements. Our imaging in PbTiO3/SrTiO3 superlattices exhibiting checkerboard strain modulation substantiates published phase-field model calculations. Furthermore, the imaging of biaxially strained Mott insulator Ca2RuO4 reveals a strain-induced nanotexture comprised of nanometer-thin metallic-structure wires separated by nanometer-thin Mott-insulating-structure walls, as confirmed by cryogenic scanning transmission electron microscopy (cryo-STEM). The nanotexture in Ca2RuO4 film is induced by the metal-to-insulator transition and has not been reported in bulk crystals. We expect the phasing of diffuse X-ray scattering from thin crystalline films in combination with cryo-STEM to open a powerful avenue for discovering, visualizing, and quantifying the periodic strain-modulated structures in quantum materials.


Subject(s)
Motion Pictures , Refraction, Ocular , Unsupervised Machine Learning
2.
Proc Natl Acad Sci U S A ; 120(32): e2301607120, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37523522

ABSTRACT

Critical state and continuum plasticity theories have been used in research and engineering practice in soil and rock mechanics for decades. These theories rely on postulated relationships between material stresses and strains. Some classical postulates include coaxiality between stress and strain rates, stress-dilatancy relationships, and kinematic assumptions in shear bands. Although numerical and experimental data have quantified the strains and grain kinematics in such experiments, little data quantifying grain stresses are available. Here, we report the first-known grain stress and local strain measurements in triaxial compression tests on synthetic quartz sands using synchrotron X-ray tomography and 3D X-ray diffraction. We use these data to examine the micromechanics of shear banding, with a focus on coaxiality, stress-dilatancy, and kinematics within bands. Our results indicate the following: 1) elevated deviatoric stress, strain, and stress ratios in shear bands throughout experiments; 2) coaxial principal compressive stresses and strains throughout samples; 3) significant contraction along shear bands; 4) vanishing volumetric strain but nonvanishing stress fluctuations throughout samples at all stages of deformation. Our results provide some of the first-known in situ stress and strain measurements able to aid in critically evaluating postulates employed in continuum plasticity and strain localization theories for sands.

3.
Proc Natl Acad Sci U S A ; 120(1): e2210214120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36580596

ABSTRACT

Respiratory X-ray imaging enhanced by phase contrast has shown improved airway visualization in animal models. Limitations in current X-ray technology have nevertheless hindered clinical translation, leaving the potential clinical impact an open question. Here, we explore phase-contrast chest radiography in a realistic in silico framework. Specifically, we use preprocessed virtual patients to generate in silico chest radiographs by Fresnel-diffraction simulations of X-ray wave propagation. Following a reader study conducted with clinical radiologists, we predict that phase-contrast edge enhancement will have a negligible impact on improving solitary pulmonary nodule detection (6 to 20 mm). However, edge enhancement of bronchial walls visualizes small airways (< 2 mm), which are invisible in conventional radiography. Our results show that phase-contrast chest radiography could play a future role in observing small-airway obstruction (e.g., relevant for asthma or early-stage chronic obstructive pulmonary disease), which cannot be directly visualized using current clinical methods, thereby motivating the experimental development needed for clinical translation. Finally, we discuss quantitative requirements on distances and X-ray source/detector specifications for clinical implementation of phase-contrast chest radiography.


Subject(s)
Solitary Pulmonary Nodule , Tomography, X-Ray Computed , Animals , Tomography, X-Ray Computed/methods , Radiography, Thoracic , Radiography , Solitary Pulmonary Nodule/diagnostic imaging
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35131900

ABSTRACT

X-ray computed tomography (CT) is one of the most commonly used three-dimensional medical imaging modalities today. It has been refined over several decades, with the most recent innovations including dual-energy and spectral photon-counting technologies. Nevertheless, it has been discovered that wave-optical contrast mechanisms-beyond the presently used X-ray attenuation-offer the potential of complementary information, particularly on otherwise unresolved tissue microstructure. One such approach is dark-field imaging, which has recently been introduced and already demonstrated significantly improved radiological benefit in small-animal models, especially for lung diseases. Until now, however, dark-field CT could not yet be translated to the human scale and has been restricted to benchtop and small-animal systems, with scan durations of several minutes or more. This is mainly because the adaption and upscaling to the mechanical complexity, speed, and size of a human CT scanner so far remained an unsolved challenge. Here, we now report the successful integration of a Talbot-Lau interferometer into a clinical CT gantry and present dark-field CT results of a human-sized anthropomorphic body phantom, reconstructed from a single rotation scan performed in 1 s. Moreover, we present our key hardware and software solutions to the previously unsolved roadblocks, which so far have kept dark-field CT from being translated from the optical bench into a rapidly rotating CT gantry, with all its associated challenges like vibrations, continuous rotation, and large field of view. This development enables clinical dark-field CT studies with human patients in the near future.


Subject(s)
Scattering, Small Angle , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Algorithms , Animals , Humans , Imaging, Three-Dimensional , Interferometry/methods , Phantoms, Imaging , Radiography , Tomography Scanners, X-Ray Computed , X-Rays
5.
Proc Natl Acad Sci U S A ; 119(32): e2202695119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35921440

ABSTRACT

Characterizing relationships between Zn2+, insulin, and insulin vesicles is of vital importance to the study of pancreatic beta cells. However, the precise content of Zn2+ and the specific location of insulin inside insulin vesicles are not clear, which hinders a thorough understanding of the insulin secretion process and diseases caused by blood sugar dysregulation. Here, we demonstrated the colocalization of Zn2+ and insulin in both single extracellular insulin vesicles and pancreatic beta cells by using an X-ray scanning coherent diffraction imaging (ptychography) technique. We also analyzed the elemental Zn2+ and Ca2+ contents of insulin vesicles using electron microscopy and energy dispersive spectroscopy (EDS) mapping. We found that the presence of Zn2+ is an important characteristic that can be used to distinguish insulin vesicles from other types of vesicles in pancreatic beta cells and that the content of Zn2+ is proportional to the size of insulin vesicles. By using dual-energy contrast X-ray microscopy and scanning transmission X-ray microscopy (STXM) image stacks, we observed that insulin accumulates in the off-center position of extracellular insulin vesicles. Furthermore, the spatial distribution of insulin vesicles and their colocalization with other organelles inside pancreatic beta cells were demonstrated using three-dimensional (3D) imaging by combining X-ray ptychography and an equally sloped tomography (EST) algorithm. This study describes a powerful method to univocally describe the location and quantitative analysis of intracellular insulin, which will be of great significance to the study of diabetes and other blood sugar diseases.


Subject(s)
Insulin-Secreting Cells , Insulin , Secretory Vesicles , Zinc , Animals , Blood Glucose , Cell Line , Insulin/analysis , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/ultrastructure , Rats , Secretory Vesicles/chemistry , Secretory Vesicles/metabolism , Spectrometry, X-Ray Emission , X-Ray Diffraction , Zinc/analysis
6.
Nano Lett ; 24(8): 2503-2510, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38258747

ABSTRACT

X-ray scintillators have utility in radiation detection, therapy, and imaging. Various materials, such as halide perovskites, organic illuminators, and metal clusters, have been developed to replace conventional scintillators due to their ease of fabrication, improved performance, and adaptability. However, they suffer from self-absorption, chemical instability, and weak X-ray stopping power. Addressing these limitations, we employ alkali metal doping to turn nonemissive CsPb2Br5 into scintillators. Introducing alkali metal dopants causes lattice distortion and enhances electron-phonon coupling, which creates transient potential energy wells capable of trapping photogenerated or X-ray-generated electrons and holes to form self-trapped excitons. These self-trapped excitons undergo radiative recombination, resulting in a photoluminescence quantum yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3 nGyair s-1 and an imaging resolution of 21 lp mm-1.

7.
Nano Lett ; 24(27): 8436-8444, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38920089

ABSTRACT

Two-dimensional (2D) lead halide perovskites are excellent candidates for X-ray detection due to their high resistivity, high ion migration barrier, and large X-ray absorption coefficients. However, the high toxicity and long interlamellar distance of the 2D perovskites limit their wide application in high sensitivity X-ray detection. Herein, we demonstrate stable and toxicity-reduced 2D perovskite single crystals (SCs) realized by interlamellar-spacing engineering via a distortion self-balancing strategy. The engineered low-toxicity 2D SC detectors achieve high stability, large mobility-lifetime product, and therefore high-performance X-ray detection. Specifically, the detectors exhibit a record high sensitivity of 13488 µC Gy1- cm-2, a low detection limit of 8.23 nGy s-1, as well as a high spatial resolution of 8.56 lp mm-1 in X-ray imaging, all of which are far better than those of the high-toxicity 2D lead-based perovskite detectors. These advances provide a new technical solution for the low-cost fabrication of low-toxicity, scalable X-ray detectors.

8.
Nano Lett ; 24(31): 9691-9699, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052908

ABSTRACT

Multimodal luminescent materials hold great promise in a diversity of frontier applications. However, achieving the multimodal responsive luminescence at the single nanoparticle level, especially besides light stimuli, has remained a challenge. Here, we report a conceptual model to realize multimodal luminescence by constructing both mechanoluminescence and photoluminescence in a single nanoparticle. We show that the lanthanide-doped fluoride nanoparticles are able to produce excellent mechanoluminescence through X-ray irradiation, and color-tunable mechanoluminescence becomes available by selecting suitable lanthanide emitters in a core-shell-shell structure. Furthermore, the design of a multilayer core-shell nanostructure enables multimodal emissions including radioluminescence, persistent luminescence, mechanoluminescence, upconversion, downshifting, and thermal-stimulated luminescence simultaneously in a single nanoparticle under multichannel excitation and stimuli. These results provide new insights into the mechanism of X-ray induced mechanoluminescence in nanocrystals and contribute to the development of smart luminescent materials toward X-ray imaging encryption, stress sensing, and anticounterfeiting.

9.
Small ; 20(14): e2307277, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37972264

ABSTRACT

Organic scintillators with efficient X-ray excited luminescence are essential for medical diagnostics and security screening. However, achieving excellent organic scintillation materials is challenging due to low X-ray absorption coefficients and inferior radioluminescence (RL) intensity. Herein, supramolecular interactions are incorporated, particularly halogen bonding, into organic scintillators to enhance their radioluminescence properties. By introducing heavy atoms (X = Cl, Br, I) into 9,10-bis(4-pyridyl)anthracene (BPA), the formation of halogen bonding (BPA-X) enhances their X-ray absorption coefficient and restricts the molecular vibration and rotation, which boosts their RL intensity. The RL intensity of BPA-Cl and BPA-Br fluorochromes increased by over 2 and 6.3 times compared to BPA, respectively. Especially, BPA-Br exhibits an ultrafast decay time of 8.25 ns and low detection limits of 25.95 ± 2.49 nGy s-1. The flexible film constructed with BPA-Br exhibited excellent X-ray imaging capabilities. Furthermore, this approach is also applicable to organic phosphors. The formation of halogen bonding in bromophenyl-methylpyridinium iodide (PYI) led to a fourfold increase in RL intensity compared to bromophenyl-methyl-pyridinium (PY). It suggests that halogen bonding serves as a promising and effective molecular design strategy for the development of high-performance organic scintillator materials, presenting new opportunities for their applications in radiology and security screening.

10.
Small ; 20(21): e2307758, 2024 May.
Article in English | MEDLINE | ID: mdl-38100187

ABSTRACT

Metal halide nanocrystals (MHNCs) embedded in a polymer matrix as flexible X-ray detector screens is an effective strategy with the advantages of low cost, facile preparation, and large area flexibility. However, MHNCs easily aggregate during preparation, recombination, under mechanical force, storage, or high operating temperature. Meanwhile, it shows an unmatched refractive index with polymer, resulting in low light yield. The related stability and properties of the device remain a huge unrevealed challenge. Herein, a composite screen (CZBM@AG-PS) by integrating MHNCs (Cs2ZnBr4: Mn2+ as an example) into silica aerogel (AG) and embedded in polystyrene (PS) is successfully developed. Further characterization points to the high porosity AG template that can effectively improve the dispersion of MHNCs in polymer detector screens, essentially decreasing nonradiative transition, Rayleigh scattering, and performance aging induced by aggregation in harsh environments. Furthermore, the higher light output and lower optical crosstalk are also achieved by a novel light propagation path based on the MHNCs/AG and AG/PS interfaces. Finally, the optimized CZBM@AG-PS screen shows much enhanced light yield, spatial resolution, and temperature stability. Significantly, the strategy is proven universal by the performance tests of other MHNCs embedded composite films for ultra-stable and efficient X-ray imaging.

11.
Small ; 20(4): e2304336, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712103

ABSTRACT

Recently, metal 1halide perovskites have shown compelling optoelectronic properties for both light-emitting devices and scintillation of ionizing radiation. However, conventional lead-based metal halide perovskites are still suffering from poor material stability and relatively low X-ray light yield. This work reports cadmium-based all-inorganic metal halides and systematically investigates the influence of the metal ion incorporation on the optoelectronic properties. This work introduces the bi-metal ion incorporation strategy and successfully enhances the photoluminescence quantum yield (98.9%), improves thermal stability, and extends the photoluminescence spectra, which show great potential for white light emission. In addition, the photoluminescent decay is also modulated with single metal ion incorporation, the charge carrier lifetime is successfully reduced to less than 1 µs, and the high luminescent efficiency and X-ray light yield (41 000 photons MeV-1 ) are maintained. Then, these fast scintillators are demonstrated for high-speed light communication and sensitive X-ray detection and imaging.

12.
Small ; : e2401624, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773869

ABSTRACT

The poor machinability of halide perovskite crystals severely hampered their practical applications. Here a high-throughput growth method is reported for armored perovskite single-crystal fibers (SCFs). The mold-embedded melt growth (MEG) method provides each SCF with a capillary quartz shell, thus guaranteeing their integrality when cutting and polishing. Hundreds of perovskite SCFs, exemplified by CsPbBr3, CsPbCl3, and CsPbBr2.5I0.5, with customized dimensions (inner diameters of 150-1000 µm and length of several centimeters), are grown in one batch, with all the SCFs bearing homogeneity in shape, orientation, and optical/electronic properties. Versatile assembly protocols are proposed to directly integrate the SCFs into arrays. The assembled array detectors demonstrated low-level dark currents (< 1 nA) with negligible drift, low detection limit (< 44.84 nGy s-1), and high sensitivity (61147 µC Gy-1 cm-2). Moreover, the SCFs as isolated pixels are free of signal crosstalk while showing uniform X-ray photocurrents, which is in favor of high spatial resolution X-ray imaging. As both MEG and the assembly of SCFs involve none sophisticated processes limiting the scalable fabrication, the strategy is considered to meet the preconditions of high-throughput productions.

13.
Small ; 20(25): e2309926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196153

ABSTRACT

As one type of recent emerging lead-free perovskites, Cs2ZrCl6 nanocrystals are widely concerned, benefiting from the eminent designability, high X-ray cutoff efficiency, and favorable stability. Improving the luminescence performance of Cs2ZrCl6 nanocrystals has great importance to cater for practical applications. In view of the surface defects frequently formed by the liquid phase method, the particle morphology and surface quality of this material are expected to be regulated if certain intervention is made in the synthesis process. In the work, differing from normal cell lattice modulation based on the ion doping, the grain size and surface morphology of Cs2ZrCl6 nanocrystals are optimized via adding a certain amount of InCl3 to the synthetic solution. The surface defects are restored to inhibit the defect-induced non-radiative transition, resulting in the improvement of the luminescence properties. Moreover, a flexible Cs2ZrCl6@polydimethylsiloxane film with excellent heat, water, and bending resistance and a light-emitting diode (LED) device are fabricated, exhibiting excellent application potential for X-ray imaging and blue LED.

14.
J Synchrotron Radiat ; 31(Pt 4): 896-909, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38843003

ABSTRACT

Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper.

15.
J Synchrotron Radiat ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39007825

ABSTRACT

The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME.

16.
Chemistry ; 30(17): e202303918, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38102982

ABSTRACT

The photoluminescent properties of lanthanide complexes have been thoroughly investigated; however, there have been much fewer studies showcasing their potential use in ionizing radiation detection. In this work, we delve into the photo- and radio-induced luminescence of a series of lanthanide-bearing organic-inorganic hybrids and their potential as a platform for X-ray scintillation and imaging. The judicious synergy between lanthanide cations and 2,6-di(1H-pyrazol-1-yl)isonicotinate (bppCOO-) ligands affords six new materials with three distinct structures. Notably, Eu-bppCOO-1 and Tb-bppCOO-2 display sharp fingerprint X-ray-excited luminescence (XEL), the intensities of which can be linearly correlated with the X-ray dose rates over a broad dynamic range (0.007-4.55 mGy s-1). Moreover, the X-ray sensing efficacies of Eu-bppCOO-1 and Tb-bppCOO-2 were evaluated, showing that Tb-bppCOO-2 features a lower detection limit of 4.06 µGy s-1 compared to 14.55 µGy s-1 of Eu-bppCOO-1. Given the higher X-ray sensitivity and excellent radiation stability of Tb-bppCOO-2, we fabricated a flexible scintillator film for X-ray imaging by embedding finely ground Tb-bppCOO-2 in the polydimethylsiloxane (PDMS) polymer. The resulting scintillator film can be utilized for high-resolution X-ray imaging with a spatial resolution of approximately 7 lp mm-1.

17.
J Endocrinol Invest ; 47(2): 325-334, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37668886

ABSTRACT

OBJECTIVES: To explore the role of conventional X-ray imaging in detecting vertebral fractures (VFs) in patients with acromegaly, both at diagnosis of disease and at the last clinical visit. The risk factors for VFs were also evaluated. DESIGN AND METHODS: A retrospective cohort study was conducted on 60 consecutive patients with acromegaly, in a tertiary referral centre. Thoracolumbar spine radiography (X-spine) was performed at the last clinical visit during the follow-up in order to detect VFs. Routine chest radiograph, performed as a part of the general evaluation at diagnosis of acromegaly, were retrospectively analysed to screen for baseline VFs. RESULTS: At diagnosis of acromegaly, chest X-ray revealed that 10 (17%) patients had VFs. Of the 50 patients without VFs at diagnosis of acromegaly, 33 (66%) remained unfractured at the last clinical visit (median [IQR] time, 144 [96-192] months after the diagnosis of acromegaly), whereas 17 (34%) had VFs. Overall, 22 patients (37%) had novel VFs detected on X-spine including five patients with previous VFs. Risk factor for incident VFs was the presence of hypogonadism at diagnosis of acromegaly (p = 0.016). CONCLUSIONS: In acromegaly patients, conventional X-rays can detect vertebral fractures early at diagnosis of acromegaly. They can also reveal incident VFs, which may occur several years later even in patients without VFs at diagnosis, above all in relation to hypogonadism.


Subject(s)
Acromegaly , Hypogonadism , Spinal Fractures , Humans , Acromegaly/complications , Acromegaly/diagnostic imaging , Retrospective Studies , X-Rays , Follow-Up Studies , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology , Radiography , Bone Density , Hypogonadism/complications
18.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33468629

ABSTRACT

Many small animals use springs and latches to overcome the mechanical power output limitations of their muscles. Click beetles use springs and latches to bend their bodies at the thoracic hinge and then unbend extremely quickly, resulting in a clicking motion. When unconstrained, this quick clicking motion results in a jump. While the jumping motion has been studied in depth, the physical mechanisms enabling fast unbending have not. Here, we first identify and quantify the phases of the clicking motion: latching, loading, and energy release. We detail the motion kinematics and investigate the governing dynamics (forces) of the energy release. We use high-speed synchrotron X-ray imaging to observe and analyze the motion of the hinge's internal structures of four Elater abruptus specimens. We show evidence that soft cuticle in the hinge contributes to the spring mechanism through rapid recoil. Using spectral analysis and nonlinear system identification, we determine the equation of motion and model the beetle as a nonlinear single-degree-of-freedom oscillator. Quadratic damping and snap-through buckling are identified to be the dominant damping and elastic forces, respectively, driving the angular position during the energy release phase. The methods used in this study provide experimental and analytical guidelines for the analysis of extreme motion, starting from motion observation to identifying the forces causing the movement. The tools demonstrated here can be applied to other organisms to enhance our understanding of the energy storage and release strategies small animals use to achieve extreme accelerations repeatedly.


Subject(s)
Coleoptera/physiology , Elasticity , Nonlinear Dynamics , Animals , Biomechanical Phenomena , Coleoptera/anatomy & histology , Energy Metabolism/physiology , Integumentary System/physiology , Motion , X-Rays
19.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732996

ABSTRACT

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot on a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with a high signal-to-noise ratio. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enables nanoscale, element-specific X-ray imaging in a compact footprint. The proof of concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in six layers of a Cu-SiO2 integrated circuit, and a path toward finer resolution and enhanced imaging capabilities is discussed.

20.
Nano Lett ; 23(1): 1-7, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36541700

ABSTRACT

Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.


Subject(s)
Electrodes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL