Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931574

ABSTRACT

Coils are one of the basic elements employed in devices. They are versatile, in terms of both design and manufacturing, according to the desired inductive specifications. An important characteristic of coils is their bidirectional action; they can both produce and sense magnetic fields. Referring to sensing, coils have the unique property to inductively translate the temporal variation of magnetic flux into an AC voltage signal. Due to this property, they are massively used in many areas of science and engineering; among other disciplines, coils are employed in physics/materials science, geophysics, industry, aerospace and healthcare. Here, we present detailed and exact mathematical modeling of the sensing ability of the three most basic scalar assemblies of coaxial pick-up coils (PUCs): in the so-called zero derivative configuration (ZDC), having a single PUC; the first derivative configuration (FDC), having two PUCs; and second derivative configuration (SDC), having four PUCs. These three basic assemblies are mathematically modeled for a reference case of physics; we tackle the AC voltage signal, VAC (t), induced at the output of the PUCs by the temporal variation of the magnetic flux, Φ(t), originating from the time-varying moment, m(t), of an ideal magnetic dipole. Detailed and exact mathematical modeling, with only minor assumptions/approximations, enabled us to obtain the so-called sensing function, FSF, for all three cases: ZDC, FDC and SDC. By definition, the sensing function, FSF, quantifies the ability of an assembly of PUCs to translate the time-varying moment, m(t), into an AC signal, VAC (t). Importantly, the FSF is obtained in a closed-form expression for all three cases, ZDC, FDC and SDC, that depends on the realistic, macroscopic characteristics of each PUC (i.e., number of turns, length, inner and outer radius) and of the entire assembly in general (i.e., relative position of PUCs). The mathematical methodology presented here is complete and flexible so that it can be easily utilized in many disciplines of science and engineering.

2.
Materials (Basel) ; 17(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673100

ABSTRACT

The multifaceted inductive technique of AC magnetic susceptibility (ACMS) provides versatile and reliable means for the investigation of the respective properties of magnetic and superconducting materials. Here, we explore, both mathematically and experimentally, the ACMS set-up, based on four coaxial pick-up coils assembled in the second-derivative configuration, when employed in the investigation of differently shaped superconducting specimens of poly-crystalline YBa2Cu3O7-δ and Bi2-xPbxSr2Ca2Cu3O10+y and single-crystalline YBa2Cu3O7-δ. Through the mathematical modeling of both the ACMS set-up and of linearly responding superconducting specimens, we obtain a closed-form relation for the DC voltage output signal. The latter is translated directly to the so-called extrinsic ACMS of the studied specimen. By taking into account the specific characteristics of the studied high-Tc specimens (such as the shape and dimensions for the demagnetizing effect, porosity for the estimation of the superconducting volume fraction, etc.), we eventually draw the truly intrinsic ACMS of the parent material. Importantly, this is carried out without the need for any calibration specimen. The comparison of the mathematical modeling with the experimental data of the aforementioned superconducting specimens evidences fair agreement.

3.
Chempluschem ; : e202400109, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727531

ABSTRACT

In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2-5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero-field splitting parameters of 1 which were previously determined by high- frequency and -field electron paramagnetic resonance and Mössbauer spectroscopies.

4.
Materials (Basel) ; 16(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37512170

ABSTRACT

The versatile AC magnetic susceptibility technique offers a detailed insight into the complex electrodynamic phenomena in superconductors. In the present study, we outline the key effects related to the temperature, AC field amplitude and frequency variations of the fundamental and harmonic components for an investigation of the vortex dynamics in a flux-grown FeSe crystal. By means of higher harmonic (nonlinear) analysis, we have explored certain atypical, asymmetric features in the AC magnetic response. These effects were identified through the detection of an even (second) harmonic and an unusual temperature shift in the odd (third) harmonic, possibly due to the complex interactions related to the composite superconducting/magnetic morphology of the crystal. Using the high-frequency sensitivity of the third harmonic, the basic functional dependencies of the pinning activation energy, as the main mixed state parameter, were determined with the implementation of the Kim-Anderson Arrhenius relation in the framework of the collective creep theory.

5.
Ultramicroscopy ; 230: 113390, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34555803

ABSTRACT

The feasibility of detecting magnetic excitations using monochromated electron energy loss spectroscopy in the transmission electron microscope is examined. Inelastic scattering cross-sections are derived using a semi-classical electrodynamic model, and applied to AC magnetic susceptibility measurements and magnon characterization. Consideration is given to electron probes with a magnetic moment, such as vortex beams, where additional inelastic scattering can take place due to the change in magnetic potential energy of the incident electron in a non-uniform magnetic field. This so-called 'Stern-Gerlach' energy loss can be used to enhance the strength of the scattering by increasing the orbital angular momentum of the vortex beam, and enables separation of magnetic from non-magnetic (i.e. dielectric) energy losses, thus providing a promising experimental route for detecting magnons. AC magnetic susceptibility measurements are however not feasible using Stern-Gerlach energy losses for a vortex beam.

6.
Chemosphere ; 257: 127184, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32526464

ABSTRACT

This work aims to characterize, in mineral and chemical terms, the ore tailings related to the Mariana disaster (MG, Brazil), occurred on 5 November 2015, and assess its correlation with sediments found in the continental shelf adjacent to the Doce River mouth (ES, Brazil). This study uses samples of tailings and seabed sediments collected at the mouth of the Doce River from 2012 to 2019. Elemental compositions of all samples were determined by X-ray fluorescence measurements; however, Synchrotron Resonant X-Ray Diffraction proved to be a remarkable technique to characterize the crystallographic phases of iron present in sediments. Studies and analyzes of the sediment samples showed that the tailings have a notable feature of the iron-crystallographic phases, mainly observed in the period after the Fundão dam failure, as compared with sediments collected in the period before. This set of iron-containing mineral phases, here called the Iron Mineralogical Set (IMS), consists of the main phases of hematite and magnetite and the minority phases of goethite and greenalite and it is used as a marker of tailings. Mass ac magnetic susceptibility measures supported the concept of the IMS as a marker. It is suggested a relationship between the content of the IMS in the sediment samples as a function of the measures of mass magnetic susceptibility. The IMS had shown the influence of tailings on the sea bed sediment indicating that there is no possibility, at the current stage, of predicting how many years this material will still be at the seabed.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical/analysis , Brazil , Disasters , Iron , Iron Compounds , Minerals , Rivers/chemistry
7.
Beilstein J Nanotechnol ; 8: 2515-2520, 2017.
Article in English | MEDLINE | ID: mdl-29259866

ABSTRACT

We report on experimental studies focusing on the dynamic ac magnetic susceptibility of a ferronematic. It has been shown recently, that in the isotropic phase of a ferronematic, a weak dc bias magnetic field of a few oersteds increases the ac magnetic susceptibility. This increment vanishes irreversibly if the substance is cooled down to the nematic phase, but can be reinduced by applying the dc bias field again in the isotropic phase [Tomasovicová, N. et al. Soft Matter2016, 12, 5780-5786]. The effect has no analogue in the neat host liquid crystal. Here, we demonstrate that by doubling the concentration of the magnetic nanoparticles, the range of the dc bias magnetic field to which the ferronematic is sensitive without saturation can be increased by about two orders of magnitude. This finding paves a way to application possibilities, such as low magnetic field sensors, or basic logical elements for information storage.

8.
J Res Natl Inst Stand Technol ; 111(1): 41-55, 2006.
Article in English | MEDLINE | ID: mdl-27274916

ABSTRACT

The phase transformation between the orthorhombic and tetragonal structures of six high-T c superconductors, Ba2RCu3O7- δ , where R = Nd, Sm, Gd, Y, Ho, and Er, and δ = 0 to 1, has been investigated using techniques of x-ray diffraction, differential thermal analysis/thermogravimetric analysis (DTA/TGA) and electron diffraction. The transformation from the oxygen-rich orthorhombic phase to the oxygen-deficient tetragonal phase involves two orthorhombic phases. A superlattice cell caused by oxygen ordering, with a' = 2a, was observed for materials with smaller ionic radius (Y, Ho, and Er). For the larger lanthanide samples (Nd, Sm, and Gd), the a' = 2a type superlattice cell was not observed. The structural phase transition temperatures, oxygen stoichiometry and characteristics of the T c plateaus appear to correlate with the ionic radius, which varies based on the number of f electrons. Lanthanide elements with a smaller ionic radius stabilize the orthorhombic phase to higher temperatures and lower oxygen content. Also, the superconducting temperature is less sensitive to the oxygen content for materials with smaller ionic radius. The trend of dependence of the phase transformation temperature on ionic radius across the lanthanide series can be explained using a quasi-chemical approximation (QCA) whereby the strain effect plays an important role on the order-disorder transition due to the effect of oxygen content on the CuO chain sites.

9.
Materials (Basel) ; 9(10)2016 Oct 12.
Article in English | MEDLINE | ID: mdl-28773946

ABSTRACT

In this paper the results concerning the synthesis of magnetite (Fe3O4) nanoparticles (NPs), their functionalization using silane derivatives, such as (3-Aminopropyl)triethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTMS), and their exhaustive morphological and physical characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersion X-ray spectrometer (EDX) analysis, AC magnetic susceptibility, UV-VIS and IR spectroscopy, and thermogravimetric (TGA) analyses are reported. Two different paths were adopted to achieve the desired functionalization: (1) the direct reaction between the functionalized organo-silane molecule and the surface of the magnetite nanoparticle; and (2) the use of an intermediate silica coating. Finally, the occurrence of both the functionalization with amino and thiol groups has been demonstrated by the reaction with ninhydrin and the capture of Au NPs, respectively.

10.
Nanomaterials (Basel) ; 4(1): 46-54, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-28348284

ABSTRACT

In this investigation, the low-frequency alternate-current (AC) magnetic susceptibility (χac) and hysteresis loop of various MgO thickness in CoFeB/MgO/CoFeB magnetic tunneling junction (MTJ) determined coercivity (Hc) and magnetization (Ms) and correlated that with χac maxima. The multilayer films were sputtered onto glass substrates and the thickness of intermediate barrier MgO layer was varied from 6 to 15 Å. An experiment was also performed to examine the variation of the highest χac and maximum phase angle (θmax) at the optimal resonance frequency (fres), at which the spin sensitivity is maximal. The results reveal that χac falls as the frequency increases due to the relationship between magnetization and thickness of the barrier layer. The maximum χac is at 10 Hz that is related to the maximal spin sensitivity and that this corresponds to a MgO layer of 11 Å. This result also suggests that the spin sensitivity is related to both highest χac and maximum phase angle. The corresponding maximum of χac is related to high exchange coupling. High coercivity and saturation magnetization contribute to high exchange-coupling χac strength.

SELECTION OF CITATIONS
SEARCH DETAIL