ABSTRACT
Drawing on a harmonized longitudinal dataset covering more than 55,000 smallholder farms in six African countries, we analyze changes in crop productivity from 2008 to 2019. Because smallholder farmers represent a significant fraction of the world's poorest people, agricultural productivity in this context matters for poverty reduction and for the broader achievement of the UN Sustainable Development Goals. Our analysis measures productivity trends for nationally representative samples of smallholder crop farmers, using detailed data on agricultural inputs and outputs which we integrate with detailed data on local weather and environmental conditions. In spite of government commitments and international efforts to strengthen African agriculture, we find no evidence that smallholder crop productivity improved over this 12-y period. Our preferred statistical specification of total factor productivity (TFP) suggests an overall decline in productivity of -3.5% per year. Various other models we test also find declining productivity in the overall sample, and none of them finds productivity growth. However, the different countries in our sample experienced varying trends, with some instances of growth in some regions. The results suggest that major challenges remain for agricultural development in sub-Saharan Africa. They complement previous analyses that relied primarily on aggregate national statistics to measure agricultural productivity, rather than detailed microdata.
Subject(s)
Agriculture , Crops, Agricultural , Africa South of the Sahara , Crops, Agricultural/growth & development , Agriculture/methods , Agriculture/trends , Humans , Crop Production/statistics & numerical data , Crop Production/trends , Farmers/statistics & numerical data , Farms , Sustainable Development/trendsABSTRACT
The "Returning Farmland to Lakes" (RFTL) project began in China following the catastrophic 1998 floods. It aims to recover flood storage capacity and mitigate flood risk to agriculture and people. This flood adaptation strategy divides the floodplain into three types of restoration polders with different flood control levels (double restoration polders, single restoration polders, and storage polders) and polders for intensive production and living (nonrestoration polders). During the substantial flooding in the Poyang Lake Basin in 2020, the double and single restoration polders were operated for flood diversion for the first time since 1999. This event provided an opportunity to assess the effectiveness of the RFTL project. Using satellite observations of rice planting and flooding areas, we found that 86% of paddy rice areas (3,400 km2) in the basin were successfully protected due to the timely flood diversion into different levels of polders. Compared to 1998, the flooded rice areas decreased overall by 58% (18 to 92% in different types of polders). Thus, the RFTL project has enhanced regional agricultural resistance to floods. A more comprehensive assessment of the RFTL project, including other ecosystem services and functions, is necessary in the future for regional sustainable development.
ABSTRACT
Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.
Subject(s)
Silicates , Trace Elements , Zea mays , Agriculture , Soil , Carbon Dioxide , Glycine maxABSTRACT
The expansion of agriculture is responsible for the mass conversion of biologically diverse natural environments into managed agroecosystems dominated by a handful of genetically homogeneous crop species. Agricultural ecosystems typically have very different abiotic and ecological conditions from those they replaced and create potential niches for those species that are able to exploit the abundant resources offered by crop plants. While there are well-studied examples of crop pests that have adapted into novel agricultural niches, the impact of agricultural intensification on the evolution of crop mutualists such as pollinators is poorly understood. We combined genealogical inference from genomic data with archaeological records to demonstrate that the Holocene demographic history of a wild specialist pollinator of Cucurbita (pumpkins, squashes, and gourds) has been profoundly impacted by the history of agricultural expansion in North America. Populations of the squash bee Eucera pruinosa experienced rapid growth in areas where agriculture intensified within the past 1,000 y, suggesting that the cultivation of Cucurbita in North America has increased the amount of floral resources available to these bees. In addition, we found that roughly 20% of this bee species' genome shows signatures of recent selective sweeps. These signatures are overwhelmingly concentrated in populations from eastern North America where squash bees were historically able to colonize novel environments due to human cultivation of Cucurbita pepo and now exclusively inhabit agricultural niches. These results suggest that the widespread cultivation of crops can prompt adaptation in wild pollinators through the distinct ecological conditions imposed by agricultural environments.
Subject(s)
Cucurbita , Humans , Animals , Bees , Cucurbita/genetics , Ecosystem , Pollination , Agriculture , Crops, AgriculturalABSTRACT
We utilize a coupled economy-agroecology-hydrology modeling framework to capture the cascading impacts of climate change mitigation policy on agriculture and the resulting water quality cobenefits. We analyze a policy that assigns a range of United States government's social cost of carbon estimates ($51, $76, and $152/ton of CO2-equivalents) to fossil fuel-based CO2 emissions. This policy raises energy costs and, importantly for agriculture, boosts the price of nitrogen fertilizer production. At the highest carbon price, US carbon emissions are reduced by about 50%, and nitrogen fertilizer prices rise by about 90%, leading to an approximate 15% reduction in fertilizer applications for corn production across the Mississippi River Basin. Corn and soybean production declines by about 7%, increasing crop prices by 6%, while nitrate leaching declines by about 10%. Simulated nitrate export to the Gulf of Mexico decreases by 8%, ultimately shrinking the average midsummer area of the Gulf of Mexico hypoxic area by 3% and hypoxic volume by 4%. We also consider the additional benefits of restored wetlands to mitigate nitrogen loading to reduce hypoxia in the Gulf of Mexico and find a targeted wetland restoration scenario approximately doubles the effect of a low to moderate social cost of carbon. Wetland restoration alone exhibited spillover effects that increased nitrate leaching in other parts of the basin which were mitigated with the inclusion of the carbon policy. We conclude that a national climate policy aimed at reducing greenhouse gas emissions in the United States would have important water quality cobenefits.
ABSTRACT
Current large-scale patterns of land use reflect history, local traditions, and production costs, much more so than they reflect biophysical potential or global supply and demand for food and freshwater, or-more recently-climate change mitigation. We quantified alternative land-use allocations that consider trade-offs for these demands by combining a dynamic vegetation model and an optimization algorithm to determine Pareto-optimal land-use allocations under changing climate conditions in 2090-2099 and alternatively in 2033-2042. These form the outer bounds of the option space for global land-use transformation. Results show a potential to increase all three indicators (+83% in crop production, +8% in available runoff, and +3% in carbon storage globally) compared to the current land-use configuration, with clear land-use priority areas: Tropical and boreal forests were preserved, crops were produced in temperate regions, and pastures were preferentially allocated in semiarid grasslands and savannas. Transformations toward optimal land-use patterns would imply extensive reconfigurations and changes in land management, but the required annual land-use changes were nevertheless of similar magnitude as those suggested by established land-use change scenarios. The optimization results clearly show that large benefits could be achieved when land use is reconsidered under a "global supply" perspective with a regional focus that differs across the world's regions in order to achieve the supply of key ecosystem services under the emerging global pressures.
ABSTRACT
Agriculture-specifically an intensification of the production of readily stored food and its distribution-has supported an increase in the global human population throughout the Holocene. Today, with greatly accelerated of growth during recent centuries, we have reached about 8 billion people. Human skeletal and archaeobotanical remains clarify what occurred over several millennia of profound societal and population change in small-scale societies once distributed across the North American midcontinent. Stepwise, not gradual, changes in the move toward an agriculturally based life, as indicated by plant remains, left a demographic signal reflecting age-independent ([Formula: see text]) mortality as estimated from skeletons. Designated the age-independent component of the Siler model, it is tracked through the juvenility index (JI), which is increasingly being used in studies of archaeological skeletons. Usually interpreted as a fertility indicator, the JI is more responsive to age-independent mortality in societies that dominated most of human existence. In the midcontinent, the JI increased as people transitioned to a more intensive form of food production that prominently featured maize. Several centuries later, the JI declined, along with a reversion to a somewhat more diverse diet and a reduction in overall population size. Changes in age-independent mortality coincided with previously recognized increases in intergroup conflict, group movement, and pathogen exposure. Similar rises and falls in JI values have been reported for other parts of the world during the emergence of agricultural systems.
Subject(s)
Agriculture , Fertility , Humans , Population Dynamics , North America , Agriculture/history , Population Density , Population Growth , Developing CountriesABSTRACT
Growing population and consumption pose unprecedented demands on food production. However, ammonia emissions mainly from food systems increase oceanic nitrogen deposition contributing to eutrophication. Here, we developed a long-term oceanic nitrogen deposition dataset (1970 to 2018) with updated ammonia emissions from food systems, evaluated the impact of ammonia emissions on oceanic nitrogen deposition patterns, and discussed the potential impact of nitrogen fertilizer overuse. Based on the chemical transport modeling approach, oceanic ammonia-related nitrogen deposition increased by 89% globally between 1970 and 2018, and now, it exceeds oxidized nitrogen deposition by over 20% in coastal regions including China Sea, India Coastal, and Northeastern Atlantic Shelves. Approximately 38% of agricultural nitrogen fertilizer was excessive, which corresponds to 15% of global oceanic ammonia-related nitrogen deposition. Policymakers and water quality managers need to pay increasingly more attention to ammonia associated with food production if the goal of reducing coastal nitrogen pollution is to be achieved for Sustainable Development Goals.
Subject(s)
Ammonia , Nitrogen , Nitrogen/analysis , Ammonia/analysis , Fertilizers/analysis , Agriculture , China , Water Quality , SoilABSTRACT
Demand for food products, often from international trade, has brought agricultural land use into direct competition with biodiversity. Where these potential conflicts occur and which consumers are responsible is poorly understood. By combining conservation priority (CP) maps with agricultural trade data, we estimate current potential conservation risk hotspots driven by 197 countries across 48 agricultural products. Globally, a third of agricultural production occurs in sites of high CP (CP > 0.75, max = 1.0). While cattle, maize, rice, and soybean pose the greatest threat to very high-CP sites, other low-conservation risk products (e.g., sugar beet, pearl millet, and sunflower) currently are less likely to be grown in sites of agriculture-conservation conflict. Our analysis suggests that a commodity can cause dissimilar conservation threats in different production regions. Accordingly, some of the conservation risks posed by different countries depend on their demand and sourcing patterns of agricultural commodities. Our spatial analyses identify potential hotspots of competition between agriculture and high-conservation value sites (i.e., 0.5° resolution, or ~367 to 3,077km2, grid cells containing both agriculture and high-biodiversity priority habitat), thereby providing additional information that could help prioritize conservation activities and safeguard biodiversity in individual countries and globally. A web-based GIS tool at https://agriculture.spatialfootprint.com/biodiversity/ systematically visualizes the results of our analyses.
Subject(s)
Commerce , Conservation of Natural Resources , Animals , Cattle , Conservation of Natural Resources/methods , Internationality , Ecosystem , Biodiversity , Agriculture/methodsABSTRACT
Agrobacterium strains transfer a single-strand form of T-DNA (T-strands) and Virulence (Vir) effector proteins to plant cells. Following transfer, T-strands likely form complexes with Vir and plant proteins that traffic through the cytoplasm and enter the nucleus. T-strands may subsequently randomly integrate into plant chromosomes and permanently express encoded transgenes, a process known as stable transformation. The molecular processes by which T-strands integrate into the host genome remain unknown. Although integration resembles DNA repair processes, the requirement of known DNA repair pathways for integration is controversial. The configuration and genomic position of integrated T-DNA molecules likely affect transgene expression, and control of integration is consequently important for basic research and agricultural biotechnology applications. This article reviews our current knowledge of the process of T-DNA integration and proposes ways in which this knowledge may be manipulated for genome editing and synthetic biology purposes.
Subject(s)
Agrobacterium/genetics , Arabidopsis/genetics , DNA, Bacterial/genetics , Genome, Plant , Nicotiana/genetics , Transgenes , Agrobacterium/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , DNA Damage , DNA End-Joining Repair , DNA, Bacterial/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Gene Editing , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Plants, Genetically Modified , Recombinational DNA Repair , Nicotiana/metabolism , Nicotiana/microbiology , Transformation, GeneticABSTRACT
Innovation and improved practices in the livestock sector represent key opportunities tomeet global climate goals. This paper provides evidence that extension services can pro-mote pasture restoration in cattle ranching in Brazil. We use a randomized controlledtrial implemented in the context of the ABC Cerrado (a large-scale program launched in2014 aimed at fostering technology adoption through a combination of training andtechnical assistance) to examine the effects of different types of extension on agriculturalpractices, input use, and productivity. Providing technical assistance to previously trainedproducers promoted pasture restoration, induced farmers to use inputs more intensively,helped them to improve their management and soil conservation practices, and substan-tially increased revenues. A costbenefit calculation indicates that US$1 invested in theABC Cerrado program increased profits by US$1.08 to $1.45. Incorporating carbonsavings amplifies this return considerably.
Subject(s)
Carbon , Greenhouse Gases , Agriculture , Animals , Brazil , Carbon/analysis , Carbon Sequestration , Cattle , Greenhouse Gases/analysisABSTRACT
Intensive crop production on grassland-derived Mollisols has liberated massive amounts of carbon (C) to the atmosphere. Whether minimizing soil disturbance, diversifying crop rotations, or re-establishing perennial grasslands and integrating livestock can slow or reverse this trend remains highly uncertain. We investigated how these management practices affected soil organic carbon (SOC) accrual and distribution between particulate (POM) and mineral-associated (MAOM) organic matter in a 29-y-old field experiment in the North Central United States and assessed how soil microbial traits were related to these changes. Compared to conventional continuous maize monocropping with annual tillage, systems with reduced tillage, diversified crop rotations with cover crops and legumes, or manure addition did not increase total SOC storage or MAOM-C, whereas perennial pastures managed with rotational grazing accumulated more SOC and MAOM-C (18 to 29% higher) than all annual cropping systems after 29 y of management. These results align with a meta-analysis of data from published studies comparing the efficacy of soil health management practices in annual cropping systems on Mollisols worldwide. Incorporating legumes and manure into annual cropping systems enhanced POM-C, microbial biomass, and microbial C-use efficiency but did not significantly increase microbial necromass accumulation, MAOM-C, or total SOC storage. Diverse, rotationally grazed pasture management has the potential to increase persistent soil C on Mollisols, highlighting the key role of well-managed grasslands in climate-smart agriculture.
Subject(s)
Agriculture/methods , Animal Feed , Carbon/chemistry , Crops, Agricultural/physiology , Grassland , Soil/chemistry , Animals , Cattle , DairyingABSTRACT
BACKGROUND: The study focuses on enhancing the effectiveness of precision agriculture through the application of deep learning technologies. Precision agriculture, which aims to optimize farming practices by monitoring and adjusting various factors influencing crop growth, can greatly benefit from artificial intelligence (AI) methods like deep learning. The Agro Deep Learning Framework (ADLF) was developed to tackle critical issues in crop cultivation by processing vast datasets. These datasets include variables such as soil moisture, temperature, and humidity, all of which are essential to understanding and predicting crop behavior. By leveraging deep learning models, the framework seeks to improve decision-making processes, detect potential crop problems early, and boost agricultural productivity. RESULTS: The study found that the Agro Deep Learning Framework (ADLF) achieved an accuracy of 85.41%, precision of 84.87%, recall of 84.24%, and an F1-Score of 88.91%, indicating strong predictive capabilities for improving crop management. The false negative rate was 91.17% and the false positive rate was 89.82%, highlighting the framework's ability to correctly detect issues while minimizing errors. These results suggest that ADLF can significantly enhance decision-making in precision agriculture, leading to improved crop yield and reduced agricultural losses. CONCLUSIONS: The ADLF can significantly improve precision agriculture by leveraging deep learning to process complex datasets and provide valuable insights into crop management. The framework allows farmers to detect issues early, optimize resource use, and improve yields. The study demonstrates that AI-driven agriculture has the potential to revolutionize farming, making it more efficient and sustainable. Future research could focus on further refining the model and exploring its applicability across different types of crops and farming environments.
Subject(s)
Crop Production , Crops, Agricultural , Deep Learning , Crops, Agricultural/growth & development , Crop Production/methods , Agriculture/methodsABSTRACT
Anthropogenic habitat modification can indirectly effect reproduction and survival in social species by changing the group structure and social interactions. We assessed the impact of habitat modification on the fitness and life history traits of a cooperative breeder, the Arabian babbler (Argya squamiceps). We collected spatial, reproductive and social data on 572 individuals belonging to 21 social groups over 6 years and combined it with remote sensing to characterize group territories in an arid landscape. In modified resource-rich habitats, groups bred more and had greater productivity, but individuals lived shorter lives than in natural habitats. Habitat modification favoured a faster pace-of-life with lower dispersal and dominance acquisition ages, which might be driven by higher mortality providing opportunities for the dominant breeding positions. Thus, habitat modification might indirectly impact fitness through changes in social structures. This study shows that trade-offs in novel anthropogenic opportunities might offset survival costs by increased productivity.
Subject(s)
Ecosystem , Life History Traits , Animals , Male , Female , Reproduction , Passeriformes/physiology , Genetic Fitness , Anthropogenic EffectsABSTRACT
Cardiovascular disease is a leading cause of death worldwide. There is limited evidence that exposure to current-use pesticides may contribute to cardiovascular disease risk. We examined the association between residential proximity to the application of agricultural pesticides and cardiovascular risk factors among 484 adult women in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a cohort based in an agricultural region of California. Outcome assessment was completed between 2010 and 2013. Using participant residential addresses and California's Pesticide Use Reporting database, we estimated agricultural pesticide use within one km of residences during the 2-year period preceding outcome assessment. We used Bayesian Hierarchical Modeling to evaluate associations between exposure to 14 agricultural pesticides and continuous measures of waist circumference, body mass index, and blood pressure. Each 10-fold increase in paraquat application around homes was associated with increased diastolic blood pressure (ß=2.60 mm Hg, 95% Credible Interval (CrI): 0.27-4.89) and each 10-fold increase in glyphosate application was associated with increased pulse pressure (ß=2.26 mm Hg, 95% CrI: 0.09-4.41). No meaningful associations were observed for the other pesticides examined. Our results suggest that paraquat and glyphosate pesticides may affect cardiovascular disease development in women with chronic environmental exposure.
ABSTRACT
Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.
ABSTRACT
Concentrated animal feeding operations (CAFOs) are responsible for the production of global greenhouse gases and harmful environmental pollutants including hydrogen sulfide, ammonia, and particulate matter. Swine farmers are frequently exposed to organic dust that is proinflammatory in the lung and are thus at greater risk of developing pneumonia, asthma, and other respiratory conditions. In addition to respiratory disease, air pollutants are directly associated with altered gastrointestinal (GI) physiology and the development of GI diseases, thereby highlighting the gut-lung axis in disease progression. Instillation of hog dust extract (HDE) for 3 wk has been reported to promote the development of chronic airway inflammation in mice, however, the impact of HDE exposure on intestinal homeostasis is poorly understood. We report that 3-wk intranasal exposure of HDE is associated with increased intestinal macromolecule permeability and elevated serum endotoxin concentrations in C57BL/6J mice. In vivo studies also indicated mislocalization of the epithelial cell adhesion protein, E-cadherin, in the colon as well as an increase in the proinflammatory cytokine, Tnfα, in the proximal colon. Moreover, mRNA expression of the Paneth cell-associated marker, Lyz1, was increased the proximal colon, whereas the expression of the goblet cell marker, Muc2, was unchanged in the epithelial cells of the ileum, cecum, and distal colon. These results demonstrate that airway exposure to CAFOs dusts promote airway inflammation and modify the gastrointestinal tract to increase intestinal permeability, induce systemic endotoxemia, and promote intestinal inflammation. Therefore, this study identifies complex physiological consequences of chronic exposure to organic dusts derived from CAFOs on the gut-lung axis.NEW & NOTEWORTHY Agricultural workers have a higher prevalence of occupational respiratory symptoms and are at greater risk of developing respiratory diseases. However, gastrointestinal complications have also been reported, yet the intestinal pathophysiology is understudied. This work is novel because it emphasizes the role of an inhaled environmental pollutant on the development of intestinal pathophysiological outcomes. This work will provide foundation for other studies evaluating how agricultural dusts disrupts host physiology and promotes debilitating gastrointestinal and systemic disorders.
Subject(s)
Dust , Endotoxemia , Mice , Animals , Swine , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , InflammationABSTRACT
BACKGROUND: The study offers insightful information about the adaptability of local and imported Chili cultivars. This experiment examines how three different chili cultivars Tanjung, Unpad, and Osaka perform in the germination and early growth phases while considering a wide range of environmental conditions. Research conducted in Jatinangor, Sumedang Regency, Indonesia, highlights the differences between cultivars and the varied possibilities for adaptability each variation possesses. RESULTS: Among them, Tanjung stands out as the most promising cultivar; its robust performance is demonstrated by its high germination index 91.7. Notable features of Osaka include the highest biomass output (1.429 g), the best water usage efficiency (WUE) at 0.015 g/liter, and the best distribution uniformity (91.2%) and application efficiency (73.6%) under different irrigation conditions. Tanjung's competitiveness is further evidenced by the fact that it trails Osaka closely on several metrics. Lower performance across criteria for Unpad suggests possible issues with flexibility. CONCLUSION: The value of this information becomes apparent when it comes to well-informed breeding programs and cultivation techniques, especially considering uncertain climate patterns and global climate change. This research contributes significantly to the body of knowledge, enabling well-informed choices for environmentally dynamic, sustainable chili farming.
Subject(s)
Capsicum , Germination , Capsicum/growth & development , Capsicum/physiology , Climate Change , Climate , Indonesia , Adaptation, Physiological , BiomassABSTRACT
Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.
Subject(s)
Crop Production , Glycine max , Nitrogen , Soil , Zea mays , Glycine max/growth & development , Glycine max/metabolism , Zea mays/growth & development , Zea mays/metabolism , Soil/chemistry , China , Crop Production/methods , Nitrogen/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Agriculture/methods , Fertilizers , Nutrients/metabolism , BiomassABSTRACT
Enhanced phytoremediation offers a rapid and eco-friendly approach for cleaning agricultural soil contaminated with copper and cadmium which pose a direct threat to food scarcity and security. The current study aimed to compare the effectiveness of the two commonly used additives, IAA and EDTA, for the remediation of copper (Cu) and cadmium (Cd) contaminated soils using sunflower and maize. The plants were cultivated in pots under controlled conditions with four sets of treatments: control (0), Cu50/Cd50, Cu50/Cd50 + EDTA, and Cu50/Cd50 + IAA. The results showed that Cu50/Cd50 mg/kg drastically compromised the phytoremediation potential of both plants, as evident by reduced shoot and root length, and lower biomass. However, the augmentation of Cu50/Cd50 with EDTA or IAA improved the tested parameters. In sunflower, EDTA enhanced the accumulation of Cu and Cd by 58% and 21%, respectively, and improved plant biomass by 41%, compared to control treatment. However, IAA exhibited higher accumulation of Cu and Cd by 64% and 25%, respectively, and enhanced plant biomass by 43%. In case of maize, IAA was superior to EDTA which enhanced the accumulation of Cu and Cd by 87% and 32% respectively, and increased the plant biomass by 57%, compared to control treatment. Our findings demonstrate that foliar IAA is more effective than EDTA in enhancing the phytoremediation potential of sunflower and maize for Cu and Cd.