Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 767
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(33): e2405836121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39116128

ABSTRACT

The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 µM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.


Subject(s)
Methylobacterium extorquens , Methylobacterium extorquens/enzymology , Methylobacterium extorquens/metabolism , Metalloproteins/chemistry , Metalloproteins/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Crystallography, X-Ray , PQQ Cofactor/metabolism , PQQ Cofactor/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Metals, Rare Earth/chemistry , Metals, Rare Earth/metabolism , Models, Molecular , Lanthanum/chemistry , Lanthanum/metabolism
2.
Proc Natl Acad Sci U S A ; 121(24): e2319301121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838011

ABSTRACT

Alcohol dehydrogenase 1B (ADH1B) is a primate-specific enzyme which, uniquely among the ADH class 1 family, is highly expressed both in adipose tissue and liver. Its expression in adipose tissue is reduced in obesity and increased by insulin stimulation. Interference with ADH1B expression has also been reported to impair adipocyte function. To better understand the role of ADH1B in adipocytes, we used CRISPR/Cas9 to delete ADH1B in human adipose stem cells (ASC). Cells lacking ADH1B failed to differentiate into mature adipocytes manifested by minimal triglyceride accumulation and a marked reduction in expression of established adipocyte markers. As ADH1B is capable of converting retinol to retinoic acid (RA), we conducted rescue experiments. Incubation of ADH1B-deficient preadipocytes with 9-cis-RA, but not with all-transretinol, significantly rescued their ability to accumulate lipids and express markers of adipocyte differentiation. A homozygous missense variant in ADH1B (p.Arg313Cys) was found in a patient with congenital lipodystrophy of unknown cause. This variant significantly impaired the protein's dimerization, enzymatic activity, and its ability to rescue differentiation in ADH1B-deficient ASC. The allele frequency of this variant in the Middle Eastern population suggests that it is unlikely to be a fully penetrant cause of severe lipodystrophy. In conclusion, ADH1B appears to play an unexpected, crucial and cell-autonomous role in human adipocyte differentiation by serving as a necessary source of endogenous retinoic acid.


Subject(s)
Adipocytes , Adipogenesis , Alcohol Dehydrogenase , Humans , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Tretinoin/metabolism , Cell Differentiation , CRISPR-Cas Systems , Mutation, Missense , Adipose Tissue/metabolism
3.
J Biol Chem ; 300(8): 107559, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002679

ABSTRACT

Many anaerobic microorganisms use the bifunctional aldehyde and alcohol dehydrogenase enzyme, AdhE, to produce ethanol. One such organism is Clostridium thermocellum, which is of interest for cellulosic biofuel production. In the course of engineering this organism for improved ethanol tolerance and production, we observed that AdhE was a frequent target of mutations. Here, we characterized those mutations to understand their effects on enzymatic activity, as well ethanol tolerance and product formation in the organism. We found that there is a strong correlation between NADH-linked alcohol dehydrogenase (ADH) activity and ethanol tolerance. Mutations that decrease NADH-linked ADH activity increase ethanol tolerance; correspondingly, mutations that increase NADH-linked ADH activity decrease ethanol tolerance. We also found that the magnitude of ADH activity did not play a significant role in determining ethanol titer. Increasing ADH activity had no effect on ethanol titer. Reducing ADH activity had indeterminate effects on ethanol titer, sometimes increasing and sometimes decreasing it. Finally, this study shows that the cofactor specificity of ADH activity was found to be the primary factor affecting ethanol yield. We expect that these results will inform efforts to use AdhE enzymes in metabolic engineering approaches.

4.
Plant J ; 118(4): 1054-1070, 2024 May.
Article in English | MEDLINE | ID: mdl-38308388

ABSTRACT

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Subject(s)
Alcohol Dehydrogenase , Arabidopsis Proteins , Arabidopsis , Oxidation-Reduction , Arabidopsis/enzymology , Arabidopsis/genetics , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Substrate Specificity , S-Nitrosoglutathione/metabolism , Amino Acid Sequence , Ethanol/metabolism
5.
Crit Rev Microbiol ; : 1-15, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916139

ABSTRACT

Candida albicans stands as the foremost prevalent human commensal pathogen and a significant contributor to nosocomial fungal infections. In the metabolism of C. albicans, alcohol dehydrogenase 1 (Adh1) is one of the important enzymes that converts acetaldehyde produced by pyruvate decarboxylation into ethanol at the end of glycolysis. Leveraging the foundational processes of alcoholic fermentation, Adh1 plays an active role in multiple biological phenomena, including biofilm formation, interactions between different species, the development of drug resistance, and the potential initiation of gastrointestinal cancer. Additionally, Adh1 within C. albicans has demonstrated associations with regulating the cell cycle, stress responses, and various intracellular states. Furthermore, Adh1 is extracellularly localized on the cell wall surface, where it plays roles in processes such as tissue invasion and host immune responses. Drawing from an analysis of ADH1 gene structure, expression patterns, and fundamental functions, this review elucidates the intricate connections between Adh1 and various biological processes within C. albicans, underscoring its potential implications for the prevention, diagnosis, and treatment of candidiasis.

6.
J Exp Bot ; 75(5): 1633-1646, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38180121

ABSTRACT

The petals of ornamental plants such as roses (Rosa spp.) are the most economically important organs. This delicate, short-lived plant tissue is highly susceptible to pathogens, in large part because the walls of petal cells are typically thinner and more flexible compared with leaf cells, allowing the petals to fold and bend without breaking. The cell wall is a dynamic structure that rapidly alters its composition in response to pathogen infection, thereby reinforcing its stability and boosting plant resistance against diseases. However, little is known about how dynamic changes in the cell wall contribute to resistance to Botrytis cinerea in rose petals. Here, we show that the B. cinerea-induced transcription factor RhbZIP17 is required for the defense response of rose petals. RhbZIP17 is associated with phenylpropanoid biosynthesis and binds to the promoter of the lignin biosynthesis gene RhCAD1, activating its expression. Lignin content showed a significant increase under gray mold infection compared with the control. RhCAD1 functions in the metabolic regulation of lignin production and, consequently, disease resistance, as revealed by transient silencing and overexpression in rose petals. The WRKY transcription factor RhWRKY30 is also required to activate RhCAD1 expression and enhance resistance against B. cinerea. We propose that RhbZIP17 and RhWRKY30 increase lignin biosynthesis, improve the resistance of rose petals to B. cinerea, and regulate RhCAD1 expression.


Subject(s)
Rosa , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Rosa/genetics , Lignin/metabolism , Gene Expression Regulation , Botrytis/physiology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant
7.
Chemistry ; 30(32): e202400454, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38568868

ABSTRACT

Rivastigmine is one of the several pharmaceuticals widely prescribed for the treatment of Alzheimer's disease. However, its practical synthesis still faces many issues, such as the involvement of toxic metals and harsh reaction conditions. Herein, we report a chemo-enzymatic synthesis of Rivastigmine. The key chiral intermediate was synthesized by an engineered alcohol dehydrogenase from Lactobacillus brevis (LbADH). A semi-rational approach was employed to improve its catalytic activity and thermal stability. Several LbADH variants were obtained with a remarkable increase in activity and melting temperature. Exploration of the substrate scope of these variants demonstrated improved activities toward various ketones, especially acetophenone analogs. To further recycle and reuse the biocatalyst, one LbADH variant and glucose dehydrogenase were co-immobilized on nanoparticles. By integrating enzymatic and chemical steps, Rivastigmine was successfully synthesized with an overall yield of 66 %. This study offers an efficient chemo-enzymatic route for Rivastigmine and provides several efficient LbADH variants with a broad range of potential applications.


Subject(s)
Alcohol Dehydrogenase , Enzymes, Immobilized , Levilactobacillus brevis , Rivastigmine , Rivastigmine/chemistry , Levilactobacillus brevis/enzymology , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Biocatalysis , Acetophenones/chemistry , Acetophenones/metabolism , Protein Engineering
8.
BMC Cancer ; 24(1): 927, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090641

ABSTRACT

OBJECTIVE: This study aims to explore ADH4 expression in hepatocellular carcinoma (HCC), its prognostic impact, and its immune correlation to provide novel insights into HCC prognostication and treatment. METHODS: HCC prognostic marker genes were rigorously selected using GEO database, Lasso regression, GEPIA, Kaplan-Meier and pROC analyses. The expression of interested markers (ADH4, DNASE1L3, RDH16, LCAT, HGFAC) in HCC and adjacent tissues was assessed by Immunohistochemistry (IHC). We observed that ADH4 exhibited low expression levels in liver cancer tissues and high expression levels in normal liver tissues. However, the remaining four genes did not manifest any statistically significant differences between hepatocellular carcinoma (HCC) tissue and adjacent non-cancerous tissue. Consequently, ADH4 became the primary focus of our research. ADH4 expression was validated by signed-rank tests and unpaired Wilcoxon rank sum tests across pan-cancer and HCC datasets. Clinical significance and associations with clinicopathological variables were determined using Kaplan-Meier, logistic regression and Cox analyses on TCGA data. The ADH4-related immune responses were explored by Spearman correlation analysis using TIMER2 data. CD68, CD4, and CD19 protein levels were confirmed by IHC in HCC and non-cancerous tissues. RESULTS: ADH4 showed significant downregulation in various cancers, particularly in HCC. Moreover, low ADH4 expression was associated with clinicopathological variables and served as an independent prognostic marker for HCC patients. Additionally, ADH4 affects a variety of biochemical functions and may influence cancer development, prognosis, and treatment by binding to immune cells. Furthermore, at the immune level, the low expression pattern of ADH4 is TME-specific, indicating that ADH4 has the potential to be used as a target for cancer immunotherapy. CONCLUSION: This study highlights the diagnostic, prognostic and immunomodulatory roles of ADH4 in HCC. ADH4 could serve as a valuable biomarker for HCC diagnosis and prognosis, as well as a potential target for immunotherapeutic interventions.


Subject(s)
Alcohol Dehydrogenase , Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Prognosis , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Male , Female , Gene Expression Regulation, Neoplastic , Kaplan-Meier Estimate
9.
Med Microbiol Immunol ; 213(1): 3, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448747

ABSTRACT

Multidrug-resistant clinical isolates of Moraxella catarrhalis have emerged, increasing the demand for the identification of new treatment and prevention strategies. A thorough understanding of how M. catarrhalis can establish an infection and respond to different stressors encountered in the host is crucial for new drug-target identification. Formaldehyde is a highly cytotoxic compound that can be produced endogenously as a by-product of metabolism and exogenously from environmental sources. Pathways responsible for formaldehyde detoxification are thus essential and are found in all domains of life. The current work investigated the role of the system consisting of the S-hydroxymethyl alcohol dehydrogenase (AdhC), a Zn-dependent class III alcohol dehydrogenase, and the S-formyl glutathione hydrolase (FghA) in the formaldehyde detoxification process in M. catarrhalis. Bioinformatics showed that the components of the system are conserved across the species and are highly similar to those of Streptococcus pneumoniae, which share the same biological niche. Isogenic mutants were constructed to study the function of the system in M. catarrhalis. A single fghA knockout mutant did not confer sensitivity to formaldehyde, while the adhC-fghA double mutant is formaldehyde-sensitive. In addition, both mutants were significantly cleared in a murine pulmonary model of infection as compared to the wild type, demonstrating the system's importance for this pathogen's virulence. The respective phenotypes were reversed upon the genetic complementation of the mutants. To date, this is the first study investigating the role of the AdhC-FghA system in formaldehyde detoxification and pathogenesis of M. catarrhalis.


Subject(s)
Moraxella catarrhalis , Streptococcus pneumoniae , Animals , Mice , Moraxella catarrhalis/genetics , Streptococcus pneumoniae/genetics , Formaldehyde , Glutathione , Hydrolases
10.
Mol Biol Rep ; 51(1): 547, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642187

ABSTRACT

BACKGROUND: Yeast biosynthesizes fusel alcohols in fermentation through amino acid catabolism via the Ehrlich pathway. ARO8 and ARO9 genes are involved in the first step of the Ehrlich pathway, while ADH2 and ADH5 genes are involved in the last step. In this study, we describe RT-qPCR methods to determine the gene expression level of genes (ARO8, ARO9, ADH2, ADH5) found in Saccharomyces cerevisiae (Sc) and Metschnikowia pulcherrima (Mp) strains growth pasteurized white grape juice. METHODS AND RESULTS: We used RNA extraction and cDNA synthesis protocols. The RT-qPCR efficiency of primer pairs was evaluated by generating a standard curve through serial dilution of yeast-derived cDNA. Method performance criteria were determined for each RT-qPCR assay. Then, we evaluated the gene expression levels of the four genes in all samples. RNA extraction and cDNA synthesis from yeast samples demonstrated the method's capability to generate high-yield, high-purity nucleic acids, supporting further RT-qPCR analysis. The highest normalized gene expression levels of ARO8 and ARO9 were observed in SC1, SC4, and SC5 samples. No significant difference in ADH2 gene expression among Mp strains was observed during the examination of ADH2 and ADH5 genes (p < 0.05). We observed no expression of the ADH5 gene in Mp strains except MP6 strain. The expression of ADH2 and ADH5 genes was higher in Sc strains compared to Mp strains. CONCLUSIONS: The results suggest that the proposed RT-qPCR methods can measure gene expression of ARO8, ARO9, ADH2, and ADH5 in Sc and Mp strains growing in pasteurized white grape juice.


Subject(s)
Metschnikowia , Saccharomyces cerevisiae , Vitis , Saccharomyces cerevisiae/metabolism , Vitis/genetics , Vitis/metabolism , DNA, Complementary/metabolism , Transaminases/genetics , Fermentation , RNA/metabolism
11.
Exp Cell Res ; 433(1): 113804, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37806378

ABSTRACT

Alcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1KO) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response. Adh1KO mice develop more severe tubular cell apoptosis in comparison to Adh1 wild-type (Adh1WT) mice during course of lethal endotoxemia. ADH1 deficiency facilitates the LPS-induced tubular cell apoptosis in a caspase-dependent manner. Mechanistically, ADH1 deficiency dampens tubular mitophagy that relies on PINK1-Parkin pathway characterized by the reduced membrane potential, reactive oxygen species (ROS) and release of fragmented mtDNA to cytosol. Kidney-specific overexpression of PINK1 and Parkin by adeno-associated viral vector 9 (AAV9) delivery ameliorates AKI exacerbation in Adh1KO mice with lethal endotoxemia. Our study supports the notion that ADH1 is critical for blockade of tubular apoptosis mediated by mitophagy, allowing the rapid identification and targeting of alcohol-metabolic route applicable to septic AKI.

12.
Appl Microbiol Biotechnol ; 108(1): 410, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976076

ABSTRACT

We characterise a reversible bacterial zinc-containing benzyl alcohol dehydrogenase (BaDH) accepting either NAD+ or NADP+ as a redox cofactor. Remarkably, its redox cofactor specificity is pH-dependent with the phosphorylated cofactors favored at lower and the dephospho-forms at higher pH. BaDH also shows different steady-state kinetic behavior with the two cofactor forms. From a structural model, the pH-dependent shift may affect the charge of a histidine in the 2'-phosphate-binding pocket of the redox cofactor binding site. The enzyme is phylogenetically affiliated to a new subbranch of the Zn-containing alcohol dehydrogenases, which share this conserved residue. BaDH appears to have some specificity for its substrate, but also turns over many substituted benzyl alcohol and benzaldehyde variants, as well as compounds containing a conjugated C=C double bond with the aldehyde carbonyl group. However, compounds with an sp3-hybridised C next to the alcohol/aldehyde group are not or only weakly turned over. The enzyme appears to contain a Zn in its catalytic site and a mixture of Zn and Fe in its structural metal-binding site. Moreover, we demonstrate the use of BaDH in an enzyme cascade reaction with an acid-reducing tungsten enzyme to reduce benzoate to benzyl alcohol. KEY POINTS: •Zn-containing BaDH has activity with either NAD + or NADP+ at different pH optima. •BaDH converts a broad range of substrates. •BaDH is used in a cascade reaction for the reduction of benzoate to benzyl alcohol.


Subject(s)
Alcohol Oxidoreductases , Benzyl Alcohol , Coenzymes , NADP , Oxidation-Reduction , Zinc , Hydrogen-Ion Concentration , NADP/metabolism , Substrate Specificity , Benzyl Alcohol/metabolism , Benzyl Alcohol/chemistry , Kinetics , Zinc/metabolism , Coenzymes/metabolism , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , NAD/metabolism , Benzaldehydes/metabolism , Benzaldehydes/chemistry , Catalytic Domain , Binding Sites , Phylogeny , Models, Molecular
13.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427176

ABSTRACT

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Subject(s)
Alcohol Dehydrogenase , Methanol , Peptococcaceae , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Methanol/metabolism , Oxidation-Reduction , Transferases/metabolism , Sulfates/metabolism , Cobalt , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism
14.
Mol Divers ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743308

ABSTRACT

Alcoholic liver injury resulting from excessive alcohol consumption is a significant social concern. Alcohol dehydrogenase (ADH) plays a critical role in the conversion of alcohol to acetaldehyde, leading to tissue damage. The management of alcoholic liver injury encompasses nutritional support and, in severe cases liver transplantation, but potential adverse effects exist, and effective medications are currently unavailable. Natural products with their potential benefits and historical use in traditional medicine emerge as promising alternatives. Triphala, a traditional polyherbal formula demonstrates beneficial effects in addressing diverse health concerns, with a notable impact on treating alcoholic liver damage through enhanced liver metabolism. The present study aims to identify potential active phytocompounds in Triphala targeting ADH to prevent alcoholic liver injury. Screening 119 phytocompounds from the Triphala formulation revealed 62 of them showing binding affinity to the active site of the ADH1B protein. Promising lipid-like molecule from Terminalia bellirica, (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid showed high binding efficiency to a competitive ADH inhibitor, 4-Methylpyrazole. Pharmacokinetic analysis further confirmed the drug-likeness and non-hepatotoxicity of the top-ranked compound. Molecular dynamics simulation and MM-PBSA studies revealed the stability of the docked complexes with minimal fluctuation and consistency of the hydrogen bonds throughout the simulation. Together, computational investigations suggest that (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid from the Triphala formulation holds promise as an ADH inhibitor, suggesting an alternative therapy for alcoholic liver injury.

15.
Int J Neurosci ; : 1-13, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197183

ABSTRACT

BACKGROUND: To explore the effect of Ganshuang granule on anti-alcoholic and anti-hangover and its potential mechanism. METHODS: SPF SD rats' drunken model and SPF Kunming mice's hangover model were used as models. RESULTS: Ganshuang granule could significantly reduce sleep time, the time to climb in mice, and significantly prolong the tolerance time and shorten sleep time in rats (p < 0.05). The blood ethanol concentration of rats in each administration group was lower than that in the model group at each time point (p < 0.05). Compared with the control group, the activities of ADH and ALDH in the liver of the model group were significantly decreased (p < 0.05); the content of DA and 5-HT in the striatum of the model group was significantly increased (p < 0.05); and the activity of AchE in the hippocampus was significantly decreased (p < 0.05). The above processes could be improved and regulated in the drug administration group. Compared with the control group, there was no significant difference between ADH and ALDH in the serum of the model group (p > 0.05). However, the activities of ADH and ALDH in the liver of drunk rats could be upregulated by Ganshuang granule (p < 0.05). CONCLUSION: Ganshuang granule has the pharmacological effects of anti-alcoholic and anti-hangover, which is related to regulating the activities of ADH and ALDH in the liver, the contents of DA and 5-HT in striatum, and the activity of AchE in the hippocampus.

16.
Mol Biol Evol ; 39(10)2022 10 07.
Article in English | MEDLINE | ID: mdl-36026493

ABSTRACT

The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.


Subject(s)
Alcohol Dehydrogenase , Alcoholism , Acetaldehyde , Agriculture , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Alcoholism/genetics , Ethanol/metabolism , Ethiopia , Humans , Nucleotides , Selection, Genetic
17.
Mol Microbiol ; 117(4): 907-920, 2022 04.
Article in English | MEDLINE | ID: mdl-35066935

ABSTRACT

Desulfovibrio fructosovorans, a sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of H2 into protons and electrons. Among them, Hnd is an electron-bifurcating hydrogenase, coupling the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 . It was previously hypothesized that its biological function involves the production of NADPH necessary for biosynthetic purposes. However, it was subsequently demonstrated that Hnd is instead a NAD+ -reducing enzyme, thus its specific function has yet to be established. To understand the physiological role of Hnd in D. fructosovorans, we compared the hnd deletion mutant with the wild-type strain grown on pyruvate. Growth, metabolite production and consumption, and gene expression were compared under three different growth conditions. Our results indicate that hnd is strongly regulated at the transcriptional level and that its deletion has a drastic effect on the expression of genes for two enzymes, an aldehyde ferredoxin oxidoreductase and an alcohol dehydrogenase. We demonstrated here that Hnd is involved in ethanol metabolism when bacteria grow fermentatively and proposed that Hnd might oxidize part of the H2 produced during fermentation generating both NADH and reduced ferredoxin for ethanol production via its electron bifurcation mechanism.


Subject(s)
Hydrogenase , Desulfovibrio , Electrons , Ethanol , Ferredoxins/metabolism , Hydrogen/metabolism , Hydrogenase/genetics , Hydrogenase/metabolism , NAD/metabolism , Oxidation-Reduction , Pyruvic Acid
18.
Biochem Biophys Res Commun ; 651: 98-106, 2023 04 09.
Article in English | MEDLINE | ID: mdl-36801615

ABSTRACT

The relationship between alcohol dehydrogenase (ADH) and liver fibrosis has been studied, but the mechanism of ADH involvement in liver fibrosis remains unclear. The aim of the present study was to explore the role of ADHI, the classical liver ADH, in hepatic stellate cell (HSC) activation and the effect of 4-methylpyrazole (4-MP), an ADH inhibitor, on liver fibrosis induced by carbon tetrachloride (CCl4) in mice. The results showed that overexpression of ADHI significantly increases proliferation, migration, adhesion and invasion rates of HSC-T6 cells as compared with controls. When HSC-T6 cells were activated by ethanol, TGF-ß1 or LPS, the expression of ADHI was elevated significantly (P < 0.05). Overexpression of ADHI significantly increased the levels of COL1A1 and α-SMA, markers of HSC activation. Moreover, the expression of COL1A1 and α-SMA was decreased significantly by transfection of ADHI siRNA (P < 0.01). In a liver fibrosis mouse model ADH activity increased significantly and was highest in the 3rd week. The activity of ADH in the liver was correlated with its activity in the serum (P < 0.05). 4-MP significantly decreased ADH activity and ameliorated liver injury, and ADH activity was positively correlated with the Ishak score of liver fibrosis. In conclusion, ADHI plays an important role in the activation of HSC, and inhibition of ADH ameliorates liver fibrosis in mice.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Animals , Mice , Carbon Tetrachloride/toxicity , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/pathology , Transforming Growth Factor beta1/metabolism , Alcohol Dehydrogenase/metabolism
19.
BMC Plant Biol ; 23(1): 372, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37501108

ABSTRACT

BACKGROUND: The increased frequency of heavy rains in recent years has led to submergence stress in rice paddies, severely affecting rice production. Submergence causes not only hypoxic stress from excess water in the surrounding environment but also osmotic stress in plant cells. We assessed physiological responses and Ethylene-Response AP2/ERF Factor regulation under submergence conditions alone and with ionic or nonionic osmotic stress in submergence-sensitive IR64 and submergence-tolerant IR64-Sub1 Indica rice cultivars. RESULTS: Our results indicate that both IR64 and IR64-Sub1 exhibited shorter plant heights and root lengths under submergence with nonionic osmotic stress than normal condition and submergence alone. IR64-Sub1 seedlings exhibited a significantly lower plant height under submergence conditions alone and with ionic or nonionic osmotic stress than IR64 cultivars. IR64-Sub1 seedlings also presented lower malondialdehyde (MDA) concentration and higher survival rates than did IR64 seedlings after submergence with ionic or nonionic osmotic stress treatment. Sub1A-1 affects reactive oxygen species (ROS) accumulation and antioxidant enzyme activity in rice. The results also show that hypoxia-inducible ethylene response factors (ERF)-VII group and alcohol dehydrogenase 1 (ADH1) and lactate dehydrogenase 1 (LDH1) genes exhibited different expression levels under nonionic or ionic osmotic stress during submergence on rice. CONCLUSIONS: Together, these results demonstrate that complex regulatory mechanisms are involved in responses to the aforementioned forms of stress and offer new insights into the effects of submergence and osmotic stress on rice.


Subject(s)
Oryza , Stress, Physiological , Ethylenes , Gene Expression Regulation, Plant , Oryza/physiology , Osmotic Pressure , Alcohol Dehydrogenase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Chembiochem ; 24(9): e202300032, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36916211

ABSTRACT

Whereas directed evolution and rational design by structural inspection are established tools for enzyme redesign, computational methods are less mature but have the potential to predict small sets of mutants with desired properties without laboratory screening of large libraries. We have explored the use of computational enzyme redesign to change the enantioselectivity of a highly thermostable alcohol dehydrogenase from Thermus thermophilus in the asymmetric reduction of ketones. The enzyme reduces acetophenone to (S)-1-phenylethanol. To invert the enantioselectivity, we used an adapted CASCO workflow which included Rosetta for enzyme design and molecular dynamics simulations for ranking. To correct for unrealistic binding modes, we used Boltzmann weighing of binding energies computed by a linear interaction energy approach. This computationally cheap method predicted four variants with inverted enantioselectivity, each with 6-8 mutations around the substrate-binding site, causing only modest reduction (2- to 7-fold) of kcat /KM values. Laboratory testing showed that three variants indeed had inverted enantioselectivity, producing (R)-alcohols with up to 99 % enantiomeric excess. The broad substrate range allowed reduction of acetophenone derivatives with full conversion to highly enantioenriched alcohols. The results demonstrate the use of computational methods to control ketoreductase stereoselectivity in asymmetric transformations with minimal experimental screening.


Subject(s)
Alcohol Dehydrogenase , Alcohols , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Alcohols/chemistry , Acetophenones , Binding Sites , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL