ABSTRACT
Hepatic steatosis plays a detrimental role in the onset and progression of alcohol-associated liver disease (ALD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved protein related to the unfolded protein response. Recent studies have demonstrated that MANF plays an important role in liver diseases. In this study, we investigated the role of MANF in ethanol-induced steatosis and the underlying mechanisms. We showed that the hepatic MANF expression was markedly upregulated in mouse model of ALD by chronic-plus-single-binge ethanol feeding. Moreover, after chronic-plus-binge ethanol feeding, hepatocyte-specific MANF knockout (HKO) mice displayed more severe hepatic steatosis and liver injury than wild-type (WT) control mice. Immunoprecipitation-coupled MS proteomic analysis revealed that arginosuccinate synthase 1 (ASS1), a rate-limiting enzyme in the urea cycle, resided in the same immunoprecipitated complex with MANF. Hepatocyte-specific MANF knockout led to decreased ASS1 activity, whereas overexpression of MANF contributed to enhanced ASS1 activity in vitro. In addition, HKO mice displayed unique urea cycle metabolite patterns in the liver with elevated ammonia accumulation after ethanol feeding. ASS1 is known to activate AMPK by generating an intracellular pool of AMP from the urea cycle. We also found that MANF supplementation significantly ameliorated ethanol-induced steatosis in vivo and in vitro by activating the AMPK signaling pathway, which was partly ASS1 dependent. This study demonstrates a new mechanism in which MANF acts as a key molecule in maintaining hepatic lipid homeostasis by enhancing ASS1 activity and uncovers an interesting link between lipid metabolism and the hepatic urea cycle under excessive alcohol exposure.
Subject(s)
Fatty Liver , Liver Diseases, Alcoholic , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Astrocytes/metabolism , Ethanol/toxicity , Fatty Liver/chemically induced , Hepatocytes/metabolism , Liver/metabolism , Mice, Knockout , Nerve Growth Factors/metabolism , Proteomics , Urea/metabolismABSTRACT
BACKGROUND: This study analyzed the clinical features and biomarkers of alcohol-associated liver disease (ALD) to investigate the diagnostic value of age, bilirubin, international normalized ratio (INR), and creatinine (ABIC) score to triglyceride (TG) ratio (ABIC/TG) in ALD-associated primary liver carcinoma (PLC). MATERIALS AND METHODS: Data were collected from 410 participants with ALD, and the epidemiological and clinical records of 266 participants were analyzed. Participants were divided into ALD-without-PLC and ALD-associated-PLC groups. Relationships between clinical characteristics, biomarkers and ALD-associated PLC were estimated. Serum lipid levels and liver function were compared between ALD patients without PLC and patients with ALD-associated PLC. Scoring systems were calculated to investigate ALD severity. The robustness of the relationship was analyzed by the receiver operating characteristic (ROC) curve. RESULTS: Age and dyslipidemia were more strongly associated with ALD-associated PLC than with ALD-without PLC, with AORs of 2.39 and 0.25, respectively, with P less than 0.05. Drinking time and average daily intake, ABIC score, and ABIC/TG ratio were significantly higher in the ALD-associated-PLC group than in the ALD-without-PLC group. The AUC for the ABIC/TG ratio predicting the incidence of PLC was 0.80 (P < 0.01), which was higher than that of the ABIC and TG scores alone; additionally, the specificity and Youden index for the ABIC/TG ratio were also higher, and the cutoff value was 6.99. CONCLUSIONS: In ALD patients, age, drinking time, and average daily intake were risk factors for PLC. Drinking time, average daily intake, TG and ABIC score have diagnostic value for ALD-associated PLC. The ABIC/TG ratio had a higher AUC value and Youden index than the ABIC score and TG level.
Subject(s)
Bilirubin , Carcinoma , Humans , Retrospective Studies , Creatinine , International Normalized Ratio , Triglycerides , Prognosis , Severity of Illness Index , Predictive Value of Tests , Biomarkers , Ethanol , LiverABSTRACT
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
Subject(s)
Hepatitis, Alcoholic , Inflammation , Humans , Hepatitis, Alcoholic/immunology , Hepatitis, Alcoholic/drug therapy , Hepatitis, Alcoholic/pathology , Hepatitis, Alcoholic/etiology , Inflammation/pathology , Inflammation/immunology , Animals , Inflammation Mediators/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Liver/pathology , Liver/immunology , Liver/drug effects , Liver/metabolismABSTRACT
SCOPE: While probiotics-based therapies have exhibited potential in alleviating alcohol-associated liver disease (ALD), the specific role of postbiotics derived from Lactobacillus reuteri (L. reuteri) in ALD remains elusive. This study aims to investigate the impact of postbiotics on ameliorating alcohol-induced hepatic steatosis and the underlying mechanisms. METHODS AND RESULTS: Using network pharmacology, the study elucidates the targets and pathways impacted by postbiotics from L. reuteri, identifying the farnesoid X receptor (FXR) as a promising target for postbiotics against ALD, and lipid metabolism and alcoholism act as crucial pathways associated with postbiotics-targeting ALD. Furthermore, the study conducts histological and biochemical analyses coupled with LC/MS to evaluate the protective effects and mechanisms of postbiotics against ALD. Postbiotics may modulate bile acid metabolism in vivo by regulating FXR signaling, activating the FXR/FGF15 pathway, and influencing the enterohepatic circulation of bile acids (BAs). Subsequently, postbiotics regulate hepatic FXR activated by BAs and modulate the expression of FXR-mediated protein, including short regulatory partner (SHP) and sterol regulatory element binding protein-1c (SREBP-1c), thereby ameliorating hepatic steatosis in mice with ALD. CONCLUSION: Postbiotics effectively alleviate ethanol-induced hepatic steatosis by regulating the FXR/SHP/SREBP-1c axis, as rigorously validated in both in vivo and in vitro.
Subject(s)
Bile Acids and Salts , Ethanol , Limosilactobacillus reuteri , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , Limosilactobacillus reuteri/physiology , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Animals , Receptors, Cytoplasmic and Nuclear/metabolism , Male , Signal Transduction/drug effects , Bile Acids and Salts/metabolism , Mice , Liver Diseases, Alcoholic/prevention & control , Probiotics/pharmacology , Fibroblast Growth Factors/metabolism , Liver/drug effects , Liver/metabolism , Lipid Metabolism/drug effects , HumansABSTRACT
The involvement of inflammasomes in the proinflammatory response observed in chronic liver diseases, such as alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), is widely recognized. Although there are different types of inflammasomes, most studies to date have given attention to NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) in the pathogenesis of ALD, NAFLD/nonalcoholic steatohepatitis, and fibrosis. Canonical inflammasomes are intracellular multiprotein complexes that are assembled after the sensing of danger signals and activate caspase-1, which matures interleukin (IL)-1ß, IL-18, and IL-37 and also induces a form of cell death called pyroptosis. Noncanonical inflammasomes activate caspase-11 to induce pyroptosis. We discuss the different types of inflammasomes involved in liver diseases with a focus on (a) signals and mechanisms of inflammasome activation, (b) the role of different types of inflammasomes and their products in the pathogenesis of liver diseases, and (c) potential therapeutic strategies targeting components of the inflammasomes or cytokines produced upon inflammasome activation.