Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters

Publication year range
1.
Lab Invest ; : 102134, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307311

ABSTRACT

Alcoholic liver disease (ALD) caused by chronic alcohol abuse involves complex processes from steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma, posing a global health issue. Bromodomain protein 4 (BRD4) typically serves as a "reader" modulating the functions of transcription factors involved in various biological processes and disease progression. However, the specific mechanisms underlying alcoholic liver injury remain unclear. Here, we detected aberrant BRD4 expression in the alcohol-induced ALD mouse model of chronic and binge ethanol feeding developed by the National Institute on Alcohol Abuse and Alcoholism (NIAAA model), consistent with the in vitro results in Aml-12 mouse hepatocytes. Blocking and inhibiting BRD4 restored the impaired autophagic flux and lysosomal functions in alcohol-treated Aml-12 cells, whereas BRD4 overexpression reduced the expression levels of autophagy marker and lysosomal genes. Furthermore, mouse BRD4 knockdown, mediated by a short hairpin RNA carried by the adeno-associated virus serotype 8, significantly attenuated the alcohol-induced hepatocyte damage, including lipid deposition and inflammatory cell infiltration. Mechanistically, BRD4 overexpression in alcoholic liver injury inhibited the expression of sirtuin (SIRT)-1 in Aml-12 cells. Chromatin immunoprecipitation and dual-luciferase reporter assays revealed that BRD4 functions as a transcription factor and suppressor, actively binding to the SIRT1 promoter region and inhibiting its transcription. SIRT1 activated autophagy, which was suppressed in alcoholic liver injury via Beclin1 deacetylation. In conclusion, our study revealed that BRD4 negatively regulated the SIRT1/Beclin1 axis and that its deficiency alleviated alcohol-induced liver injury in mice, thus providing a new strategy for ALD treatment.

2.
Toxicol Appl Pharmacol ; : 117117, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362310

ABSTRACT

OBJECTIVE: Endoplasmic reticulum stress (ERS) plays an important role in the development of Alcoholic liver injury (ALI), but the exact mechanism needs further exploration. This study aims to investigate the role of ERS-XBP1s in ALI, and providing new target for the treatment of liver injury. METHOD: The ALI model was constructed using the NIAAA method and was validated by several methods. ERS was detected using western-blot, RT-PCR and immunohistochemistry. Apoptosis was measured by TUNEL staining, Hoechst staining, western-blot and Annexin V-FITC. Lysosomal function and autophagy were measured by Lyso-Tracker Green probe, western-blot and immunofluorescence, respectively. RESULTS: The ALI model was successfully constructed as demonstrated by increased liver steatosis, inflammation and oxidative stress, and higher levels of serum ALT, AST and TG. Alcohol significantly increased the expression of ERS-related molecules, such as PERK, IRE1α, GRP78 and XBP1s, and promoted the nuclear translocation of XBP1s. Moreover, alcohol significantly increased apoptosis and inhibition of XBP1s could reverse this effect in vivo and in vitro. Interestingly, we found that alcohol significantly elevated hepatocyte LC3-II/I levels and concomitantly accumulation of P62, and this phenomenon was reversed by inhibiting XBP1s both in vivo and in vitro. Mechanistically, we found that alcohol activation of ER stress sensor XBP1s which promoted liver injury via inhibiting lysosomal function and autophagy activity in hepatocytes, whereas inhibition of XBP1s reduces hepatocyte apoptosis by restoring lysosomal activity and activating of autophagy. CONCLUSION: Alcohol promotes hepatocytes injury via ER stress sensor XBP1s mediated inhibition of autophagy. Therefore, inhibition of XBP1 may protect the liver from alcohol-induced damage.

3.
Mol Divers ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743308

ABSTRACT

Alcoholic liver injury resulting from excessive alcohol consumption is a significant social concern. Alcohol dehydrogenase (ADH) plays a critical role in the conversion of alcohol to acetaldehyde, leading to tissue damage. The management of alcoholic liver injury encompasses nutritional support and, in severe cases liver transplantation, but potential adverse effects exist, and effective medications are currently unavailable. Natural products with their potential benefits and historical use in traditional medicine emerge as promising alternatives. Triphala, a traditional polyherbal formula demonstrates beneficial effects in addressing diverse health concerns, with a notable impact on treating alcoholic liver damage through enhanced liver metabolism. The present study aims to identify potential active phytocompounds in Triphala targeting ADH to prevent alcoholic liver injury. Screening 119 phytocompounds from the Triphala formulation revealed 62 of them showing binding affinity to the active site of the ADH1B protein. Promising lipid-like molecule from Terminalia bellirica, (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid showed high binding efficiency to a competitive ADH inhibitor, 4-Methylpyrazole. Pharmacokinetic analysis further confirmed the drug-likeness and non-hepatotoxicity of the top-ranked compound. Molecular dynamics simulation and MM-PBSA studies revealed the stability of the docked complexes with minimal fluctuation and consistency of the hydrogen bonds throughout the simulation. Together, computational investigations suggest that (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid from the Triphala formulation holds promise as an ADH inhibitor, suggesting an alternative therapy for alcoholic liver injury.

4.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273367

ABSTRACT

Alcoholic liver disease (ALD) is a globally prevalent form of liver disease for which there is no effective treatment. Recent studies have found that a significant decrease in butyrate was closely associated with ALD development. Given the low compliance and delivery efficiency associated with oral-route butyrate administration, a highly effective butyrate-yielding dietary supplement, butyrylated high-amylose maize starch (HAMSB), is a good alternative approach. Here, we synthesized HAMSB, evaluated the effect of HAMSB on acute ALD in mice, compared its effect with that of oral administration of butyrate, and further studied the potential mechanism of action. The results showed HAMSB alleviated acute ALD in mice, as evidenced by the inhibition of hepatic-function impairment and the improvement in liver steatosis and lipid metabolism; in these respects, HAMSB supplementation was superior to oral sodium butyrate administration. These improvements can be attributed to the reduction of oxidative stress though the regulation of Nrf2-mediated antioxidant signaling in the liver and the improvement in the composition and function of microbiota in the intestine. In conclusion, HAMSB is a safe and effective dietary supplement for preventing acute ALD that could be useful as a disease-modifying functional food or candidate medicine.


Subject(s)
Butyrates , Dietary Supplements , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Liver , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Mice , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/microbiology , Liver/metabolism , Liver/drug effects , Butyrates/pharmacology , Male , Mice, Inbred C57BL , Antioxidants/pharmacology , Butyric Acid/pharmacology
5.
Funct Integr Genomics ; 23(3): 261, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37530875

ABSTRACT

As alcohol consumption increases, alcoholic liver disease (ALD) has become more popular and is threating our human life. In this study, we found mulberry fruit extract (MFE) repaired alcohol-caused liver diseases by regulating hepatic lipid biosynthesis pathway and oxidative singling in alcoholically liver injured (ALI) rats. MFE administration inhibited hepatic lipid accumulation and improved liver steatosis in ALI rats. MFE also enhanced the antioxidant capacity and alleviated the inflammatory response by increasing the activities of antioxidant enzymes and decreasing the contents of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. Additionally, MFE regulated the expression of miRNA-155 and lipid metabolism-related PPARα protein in rats. Both miR-155 and PPARα play important roles in liver function. The results indicate that MFE has hepatoprotective effects against ALI in rats.


Subject(s)
Liver Diseases, Alcoholic , MicroRNAs , Morus , Humans , Rats , Animals , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Morus/metabolism , Lipid Metabolism , Fruit/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lipids , Oxidative Stress
6.
Liver Int ; 43(4): 840-854, 2023 04.
Article in English | MEDLINE | ID: mdl-36737842

ABSTRACT

BACKGROUND & AIMS: Heavy drinking is a primary cause of alcoholic liver injury (ALI). Pituitary tumour transforming gene 1 (PTTG1) is involved in the occurrence and development of hepatocellular carcinoma (HCC), which is a well-known inflammation-related cancer with various aetiologies, including alcohol consumption. However, the role of PTTG1 in alcohol-induced liver injury and inflammation is not clear. METHODS: Blood samples were collected from patients with acute alcohol intoxication (n = 20) and healthy controls (n = 20). PTTG1 knockout (KO) mice and PTTG1 transgenic (TG) mice were given a single gavage of alcohol (5 g/kg, 50%) to construct the alcohol-induced liver injury. RESULTS: We found that serum PTTG1 levels were downregulated in acute ALI patients. In addition, acute alcohol administration significantly reduced PTTG1 levels in the serum and liver of mice. Compared to wild-type mice, PTTG1 KO mice had more serious liver injury, which was accompanied by worsened hepatic endoplasmic reticulum (ER) stress and hepatocyte pyroptosis induced by alcohol. Similarly, PTTG1 deficiency exacerbated alcohol-induced cell death in primary mouse hepatocytes and LO2 cells, by increasing hepatic ER stress and pyroptosis. Importantly, TUDCA, an ER stress inhibitor, could blocked alcohol-induced hepatic pyroptosis in PTTG1 knockdown LO2 cells. Finally, overexpression of PTTG1 substantially attenuated alcohol-induced liver injury by reducing ER stress and hepatic pyroptosis in mice. CONCLUSIONS: We demonstrated that PTTG1 participates in ALI and has a protective effect against alcohol-induced hepatic ER stress and pyroptosis.


Subject(s)
Carcinoma, Hepatocellular , Chemical and Drug Induced Liver Injury, Chronic , Liver Neoplasms , Mice , Animals , Pyroptosis , Carcinoma, Hepatocellular/pathology , Chemical and Drug Induced Liver Injury, Chronic/pathology , Liver Neoplasms/pathology , Hepatocytes/metabolism , Liver , Ethanol/toxicity , Endoplasmic Reticulum Stress , Inflammation/pathology
7.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36724245

ABSTRACT

AIMS: The occurrence of alcoholic liver injury is related to the oxidative stress. Bacteria for alleviating alcoholic related liver injury have received widespread attention. Study aims to investigate the alleviated efficacy of Lactiplantibacillus plantarum (L. plantarum) P101 on alcohol-induced liver injury and its potential mechanism. METHODS AND RESULTS: The model of alcoholic liver injury was obtained according to the NIAAA method and the mice were treated with L. plantarum P101 (108 CFU.mice-1). Results showed that treatment of L. plantarum P101 could significantly improve liver function and antioxidant capacity. Furthermore, L. plantarum P101 significantly up-regulated Nuclear factor erythroid 2-related factor (Nrf2) and its target molecule, Hemeoxygenase 1 (HO-1), by promoting nuclear translocation of Nrf2. Moreover, inflammatory factors and pro-apoptotic protein (Caspase3) levels were significantly decreased in mice treated with L. plantarum P101. CONCLUSIONS: This study confirmed that the beneficial effect of L. plantarum P101 supplement was achieved via regulating Nrf2/HO-1 antioxidant pathway, and alleviated alcoholic liver injury.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Liver , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Oxidative Stress , Lactobacillaceae/chemistry
8.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003718

ABSTRACT

Alcohol use accounts for a large variety of diseases, among which alcoholic liver injury (ALI) poses a serious threat to human health. In order to overcome the limitations of chemotherapeutic agents, some natural constituents, especially polysaccharides from edible medicinal plants (PEMPs), have been applied for the prevention and treatment of ALI. In this review, the protective effects of PEMPs on acute, subacute, subchronic, and chronic ALI are summarized. The pathogenesis of alcoholic liver injury is analyzed. The structure-activity relationship (SAR) and safety of PEMPs are discussed. In addition, the mechanism underlying the hepatoprotective activity of polysaccharides from edible medicinal plants is explored. PEMPs with hepatoprotective activities mainly belong to the families Orchidaceae, Solanaceae, and Liliaceae. The possible mechanisms of PEMPs include activating enzymes related to alcohol metabolism, attenuating damage from oxidative stress, regulating cytokines, inhibiting the apoptosis of hepatocytes, improving mitochondrial function, and regulating the gut microbiota. Strategies for further research into the practical application of PEMPs for ALI are proposed. Future studies on the mechanism of action of PEMPs will need to focus more on the utilization of multi-omics approaches, such as proteomics, epigenomics, and lipidomics.


Subject(s)
Liver Diseases, Alcoholic , Plants, Medicinal , Humans , Plants, Edible , Liver/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/metabolism
9.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240190

ABSTRACT

This study investigated the beneficial effects of epidermal growth factor (EGF) on muscle loss in rats with chronic ethanol feeding. Six-week-old male Wistar rats were fed either a control liquid diet without EGF (C group, n = 12) or EGF (EGF-C group, n = 18) for two weeks. From the 3rd to 8th week, the C group was divided into two groups. One was continually fed with a control liquid diet (C group), and the other one was fed with an ethanol-containing liquid diet (E group); moreover, the EGF-C group was divided into three groups, such as the AEGF-C (continually fed with the same diet), PEGF-E (fed with the ethanol-containing liquid diet without EGF), and AEGF-E (fed with the ethanol-containing liquid diet with EGF). As a result, the E group had significantly higher plasma ALT and AST, endotoxin, ammonia, and interleukin 1b (IL-1b) levels, along with liver injuries, such as hepatic fatty changes and inflammatory cell infiltration. However, plasma endotoxin and IL-1b levels were significantly decreased in the PEGF-E and AEGF-E groups. In addition, the protein level of muscular myostatin and the mRNA levels of forkhead box transcription factors (FOXO), muscle RING-finger protein-1 (MURF-1) and atorgin-1 was increased considerably in the E group but inhibited in the PEGF-E and AEGF-E groups. According to the principal coordinate analysis findings, the gut microbiota composition differed between the control and ethanol liquid diet groups. In conclusion, although there was no noticeable improvement in muscle loss, EGF supplementation inhibited muscular protein degradation in rats fed with an ethanol-containing liquid diet for six weeks. The mechanisms might be related to endotoxin translocation inhibition, microbiota composition alteration as well as the amelioration of liver injury. However, the reproducibility of the results must be confirmed in future studies.


Subject(s)
Epidermal Growth Factor , Liver Diseases, Alcoholic , Rats , Male , Animals , Epidermal Growth Factor/metabolism , Rats, Wistar , Reproducibility of Results , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Ethanol/pharmacology , Endotoxins/metabolism , Muscles
10.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(3): 306-317, 2023 Jun 25.
Article in English, Zh | MEDLINE | ID: mdl-37476942

ABSTRACT

OBJECTIVES: To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice. METHODS: siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR. RESULTS: Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-ß, Tnf-α and Il-6 were decreased (all P<0.01). CONCLUSIONS: The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.


Subject(s)
Ethanol , Liver , Animals , Female , Mice , Antioxidants/metabolism , Cholesterol/metabolism , Ethanol/metabolism , Ethanol/pharmacology , Glutathione/metabolism , Glutathione/pharmacology , Inflammation , Lipids/pharmacology , Malondialdehyde/metabolism , Malondialdehyde/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Reactive Oxygen Species/metabolism , RNA, Small Interfering/pharmacology , Superoxide Dismutase , Triglycerides/metabolism , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism
11.
Biochem Biophys Res Commun ; 610: 49-55, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35436630

ABSTRACT

AIMS: Berberine hydrochloride (BBR) is efficacious in relieving alcoholic liver injury (ALI) in animal models, but its underlying mechanisms remains largely unclear. METHODS AND RESULTS: In the study, the rats were divided into control group, model group, model with BBR group, and control with BBR group, and given corresponding treatment for 4 weeks. RNA-Seq, ELISA and RT-PCR were performed to explore the potential mechanisms of BBR in ALI. Treatment of rats with BBR (200 mg/kg/d, gavage, once daily) over 4 weeks diminished 4 g/kg/d alcohol-induced inflammation and lipid deposition. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in BBR-treated rats. Hepatic gene expression profile detected that BBR suppressed ethanol-stimulated overexpression of thyroid hormone responsive gene-THRSP. And overexpression of THRSP-responsive genes (fatty acid synthase-FASN, adenosine monophosphate activated protein kinase α-AMPK-α, acetyl-CoA carboxylase-ACC, ATP-citrate lyase-ACLY) responsible for fatty acid synthesis was also downregulated by BBR. Additionally, BBR downregulated expression of cluster of differentiation 36-CD36 and upregulated expression of peroxisome proliferator-activated receptor α (PPARα) and its target genes (carnitine palmitoyltransferase 1 α-CPT1α and acyl-CoA oxidase 1-ACOX1). Meanwhile, BBR treatment suppressed systemic inflammation by mediating a reduction in IL-10, TNF-α, LPS, and ET, but elevated IL-6. CONCLUSIONS: The results indicated that BBR alleviated alcoholism-induced hepatic injury by suppressing inflammation (IL-10, TNF-α, LPS, ET and IL-6), and regulating fatty acids uptake (CD36), lipid synthesis (THRSP, FASN, AMPK-α, ACC, ACLY) and lipid oxidation (PPARα, CPT1α, ACOX1), and THRSP may be its novel target.


Subject(s)
Berberine , Chemical and Drug Induced Liver Injury, Chronic , Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Berberine/therapeutic use , Chemical and Drug Induced Liver Injury, Chronic/pathology , Ethanol/adverse effects , Inflammation/pathology , Interleukin-10/metabolism , Interleukin-6/metabolism , Lipid Metabolism , Lipopolysaccharides/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Rats , Tumor Necrosis Factor-alpha/metabolism
12.
Eur J Nutr ; 61(1): 115-126, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34215920

ABSTRACT

PURPOSE: Alcoholic liver disease (ALD) is a major health issue globally. In addition to pharmacotherapy, dietary support is also regarded as reliable strategy for ALD management. As a widely distributed natural constituent within edible plants, the present study aims to investigate the hepatoprotective effects of ursolic acid (UA) against ALD and also to deepen insights into the underlying targets and mechanisms comprehensively. METHODS: The hepatoprotective activity of UA against chronic alcohol-induced liver injury was investigated on Lieber-DeCarli liquid diet-based mouse model. In-depth RNA-seq transcriptomics and TMT-based proteomics analyses were conducted in parallel. Data integration as well as bioinformatics analysis were also performed to unravel the targets and mechanisms associated with the hepatoprotective activity of UA intake against alcoholic liver injury comprehensively. RESULTS: The serum biomarkers and pathological characteristics indicated the hepatoprotective effects of UA intake on alcoholic liver injury. 567 target genes and 377 target proteins related to the hepatoprotective activity of UA were identified in transcriptomics and proteomics analysis respectively, most of which were associated with function of cellular process, cell part and binding. After data integration, 56 co-regulated targets, including ADH4, CYP450 enzymes, NQO1, apolipoproteins, glutathione-S-transferase, etc. which were consistently modulated on both mRNA and protein levels were identified. These co-regulated targets were found to be correlated with 70 KEGG pathways led by carcinogenesis, retinol metabolism and CYP450 metabolism pathways. CONCLUSION: UA intake ameliorated chronic alcohol-induced liver injury. Given the role of the co-regulated targets in ALD and the bioinformatics analysis results, CYP450-, glutathione and redox homeostasis-dependent antioxidation, promotion of lipid transport, and restoration of ethanol metabolic capacity are the potentially underlying mechanisms. This information will further deepen our insights into the hepatoprotective effects of UA-rich edible plants, and provide us valuable instruction for ALD management.


Subject(s)
Alcoholism , Liver Diseases, Alcoholic , Triterpenes , Alcohol Drinking , Animals , Liver , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Mice , Ursolic Acid
13.
Molecules ; 27(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35335153

ABSTRACT

Liver damage seriously affects human health. Over 35% of cases of acute liver damage are caused by alcohol damage. Thus, finding drugs that can inhibit and effectively treat this disease is necessary. This article mainly focuses on the effect of the metabolome physical activity of active peptides in Camellia vietnamensis active peptide (CMAP) and improving liver protection. DEAE Sepharose FF ion-exchange column chromatography was used in separating and purifying crude peptides from Camellia vietnamensis Two components, A1 and A2, were obtained, and the most active A1 was selected. Sephadex G-100 gel column chromatography was used in A1 separation and purification. Three components, Al-1, Al-2, and Al-3, were obtained. Through antioxidant activity in vitro as an index of inspection, the relatively active component A1-2 was removed. Reverse-phase high-performance liquid chromatography showed that the purity of component A1-2 was 93.45%. The extracted CMAPs acted on alcoholic liver injury cells. Metabolomics studies revealed that the up-regulated metabolites were ribothymidine and xanthine; the down-regulated metabolites were hydroxyphenyllactic acid, creatinine, stearoylcarnitine, and inosine. This study provides an effective theoretical support for subsequent research.


Subject(s)
Camellia , Chemical and Drug Induced Liver Injury, Chronic , Chromatography, Ion Exchange/methods , Humans , Peptides
14.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144575

ABSTRACT

Liver-related disease caused by alcohol is a frequent disorder of the hepatic tract. Heavy consumption of alcohol in a short period causes oxidative damage to the liver. Sea cucumber is abundant in nutrients and its various extracts have been studied for antioxidant properties. One peptide was isolated and identified from Apostichopus japonicus in our recent study. We investigated the benefits of the peptide in a model of acute ethanol-induced male C57BL/6J mice. Dietary intake of the peptide could attenuate hepatomegaly, hepatitis and the accumulation of lipid droplets, and increase antioxidant enzyme activities in mice with acute alcoholic liver injury. The results indicated that a 20 mg/kg peptide supplement could activate the Nrf2/HO-1 pathway and block the nuclear translocation of NF-κB to alleviate oxidative stress and inflammation. In addition, the preventive effects of peptide supplementation may be related to autophagy. This study suggests that dietary supplementation with a sea cucumber-derived peptide is one of the potential candidates to alleviate acute alcoholic liver injury.


Subject(s)
Liver Diseases, Alcoholic , Stichopus , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Ethanol/metabolism , Liver , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Peptides/metabolism , Peptides/pharmacology
15.
J Sci Food Agric ; 102(15): 6877-6888, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35655427

ABSTRACT

BACKGROUND: Pueraria lobata (Willd.) Ohwi (PL) has been used in China to detoxify alcohol and protect the liver for millennia, though its mechanism of liver protection has not been elucidated. However, fermentation is considered to be one of the effective ways to enhance the efficacy of traditional Chinese medicine. The aim of this study was to investigate the hepatoprotective mechanism of probiotic-fermented PL (FPL). Sprague Dawley rats were administered with FPL followed by gavage of alcohol for seven consecutive days; following that, liver injury levels were evaluated in rats. RESULTS: FPL ameliorated lipid accumulation and inflammation levels in rats. Meanwhile, the levels of ethanol dehydrogenase, acetaldehyde dehydrogenase, and cytochrome P4502E1 were elevated by FPL treatment. It was observed that the levels of catalase, superoxide dismutase, and glutathione peroxidase were elevated, and the expression of nuclear transcriptional factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 genes and proteins were increased by FPL treatment, demonstrating that the Nrf2-mediated signal pathway was activated. Furthermore, FPL restored the composition of the gut microbiota with an increase in the abundances of Firmicutes and Lactobacillus and a decrease in the abundances of Bacteroidota and Akkermansia. Additionally, a strong correlation was found between the gut microbiota and the antioxidant parameters. CONCLUSION: The results indicate that FPL possesses an excellent protective effect in alcoholic liver injury. Our findings are beneficial to the development of hepatoprotective nutraceuticals for alcoholics. © 2022 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Pueraria , Rats , Animals , Pueraria/chemistry , Pueraria/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley , Liver/metabolism , Ethanol/metabolism
16.
Anal Bioanal Chem ; 413(23): 5715-5724, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34291303

ABSTRACT

Acute alcoholic liver injury (AALI) is a threat to human health. Dendrobium officinale polysaccharide (DOP) has the potential to protect the liver by enhancing the anti-oxidative system to maintain the relative balance of ROS (active oxygen species) and antioxidants in AALI mice. However, the dynamic improvement effect of DOP on AALI is still not clear and accurate medication guidance is not available, which limits the clinical application of DOP. Because of the advantages of high sensitivity, noninvasiveness, and visualization, near-infrared (NIR) fluorescence imaging has been widely studied in biochemistry and biomedicine. As the glutathione (GSH) level in the liver is closely related to the progression of AALI, herein, an NIR fluorescent probe for GSH, HCG was used to dynamically evaluate the effect of DOP on AALI mice. In this study, DOP was proven to maintain the relative balance of GSH content in the liver to protect it from damage. To the best of our knowledge, it is the first time to assess the effect of DOP on AALI mice through a NIR fluorescence imaging technique. This study may also provide a potential NIR imaging agent for the clinical research to improve the management of liver injury-related diseases.


Subject(s)
Dendrobium/chemistry , Hepatitis, Alcoholic/prevention & control , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Spectrometry, Fluorescence/methods , Spectroscopy, Near-Infrared/methods , Acute Disease , Animals , Glutathione/metabolism , Hepatitis, Alcoholic/metabolism , Liver/metabolism , Mice
17.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923467

ABSTRACT

This study aimed to investigate the protective effect of black raspberry anthocyanins (BRAs) against acute and subacute alcoholic liver disease (ALD). Network analysis and docking study were carried out to understand the potential mechanism. Thereafter, the serum biochemical parameters and liver indexes were measured, the histopathological changes of the liver were analyzed in vivo. The results showed that all tested parameters were ameliorated after the administration of BRAs with alcohol. Meanwhile, there was increased protein expression of NF-κB and TGF-ß in extracted livers, which was associated with hepatitis and hepatic fibrosis. Furthermore, BRAs and cyanidin-3-O-rutinoside exhibited cytotoxic effects on t-HSC/Cl-6, HepG2, and Hep3B and induced the apoptosis of HepG2 cells; downregulated the protein expression level of Bcl-2; upregulated the level of Bax; and promoted the release of cytochrome C, cleaved caspase-9, cleaved caspase-3, and cleaved PARP in HepG2 cells. In addition, the antioxidant activity of BRAs was tested, and the chemical components were analyzed by FT-ICR MS. The results proved that BRAs exert preventive effect on ALD through the antioxidant and apoptosis pathways.


Subject(s)
Anthocyanins/metabolism , Apoptosis/physiology , Liver Diseases, Alcoholic/metabolism , Antioxidants/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cytochromes c/metabolism , Hep G2 Cells , Humans , Spectroscopy, Fourier Transform Infrared
18.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4531-4540, 2021 Sep.
Article in Zh | MEDLINE | ID: mdl-34581059

ABSTRACT

This study aims to explore underlying mechanism of Lonicerae Japonicae Flos(LJF) in protecting rats against acute alcoholic liver injury(ALI) based on mitogen-activated protein kinase(MAPK) pathway. First, the targets of LJF in preventing ALI were predicted by network pharmacology and the component-target-pathway network was constructed, so that the key targets of LJF components acting on MAPK pathway were screened. Second, male SD rats were randomized into the control(KB) group, model(MX) group, positive(YX) group, and LJF high-(GJ), medium-(ZJ), and low-(DJ) dose groups. Each administration group was given(ig) corresponding drugs for 7 days and KB group and MX group received(ig) equal volume of distilled water every day. Except for KB group, rats were given Chinese spirit(56%, 3 days) for ALI modeling. The levels of aspartate transaminase(AST), alanine transaminase(ALT), interleukin-6(IL6) and tumor necrosis factor-α(TNF-α) in serum and malondialdehyde(MDA), glutathione(GSH), superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) in liver tissue of rats in each group were detected. Furthermore, we employed quantitative real-time PCR(qRT-PCR) to probe the effects of LJF on the key targets of MAPK pathway in ALI rats. A total of 28 active components of LJF were screened from TCMSP database, and 317 intersected with ALI-related targets. According to Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis, the 317 targets involved 226 pathways, which were mainly liver disease, inflammation, immunity, apoptosis and other related pathways. According to the MAPK pathway-target-active component network, the key active components of LJF, such as chlorogenic acid, hederagenol, and hyperoside, acted on 25 key targets of MAPK pathway. The results of in vivo experiments showed decreased levels of AST, ALT, and MDA in DJ, ZJ, and GJ groups(P<0.01 or P<0.05), reduced levels of IL6 in DJ and GJ groups(P<0.01 or P<0.05), and improved levels of SOD and GSH in ZJ and GJ groups(P<0.01 or P<0.05). The results of qRT-PCR demonstrated that the expression levels of mitogen-activated protein kinase kinase 4(MAPK2 K4) and mitogen-activated protein kinase 3(MAPK3) were decreased in DJ, ZJ, and GJ groups(P<0.01). The network pharmacology and experimental verification showed that the active components in LJF can reduce the inflammatory factor level and enhance the activities of SOD and GSH-Px by inhibiting the expression of key targets of MAPK pathway, thus alleviating and preventing liver damage caused by alcohol.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases , Animals , Chlorogenic Acid , Liver , Male , Rats , Rats, Sprague-Dawley
19.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3900-3906, 2021 Aug.
Article in Zh | MEDLINE | ID: mdl-34472266

ABSTRACT

As a common disease worldwide, alcoholic liver injury is caused by long-term or excessive intake of alcohol and triggers cell death due to alcohol metabolism and reactive oxygen species(ROS)-mediated cytotoxicity. Wangshi Baochi(WSBC) Pills have been widely adopted in clinical practice for evacuating stasis, resolving turbidity, clearing heat, tranquilizing mind, invigorating sto-mach, promoting digestion, purging fire and removing toxin. This study aimed to investigate the efficacy of WSBC Pills in dispelling the effect of alcohol and protecting against acute alcoholic liver/stomach injury in mice, and preliminarily investigate its possible mole-cular mechanism. The results found that the preventive treatment with WSBC Pills contributed to elevating the activity of alcohol dehydrogenase(ADH) and its expression in liver and shortening the time required for sobering up of mice with acute alcoholic liver injury. The staining of liver pathological sections as well as the detection of serum aspartate aminotransferase(AST) and alanine aminotransferase(ALT) and liver ROS levels revealed that WSBC Pills protected the liver by reducing serum AST and ALT. It suppressed oxidative stress-induced liver injury by lowering liver ROS and elevating superoxide dismutase(SOD), and the liver-protecting effect was superior to that of silibinin. Western blot assay confirmed that WSBC Pills inhibited the oxidative stress by up-regulating SOD1 and NAD(P)H: quinone oxidoreductase 1(NQO-1). In addition, WSBC Pills lowered the ROS level to protect against the acute alcoholic stomach injury in mice. The findings have suggested that WSBC Pills alleviated the acute alcoholic liver/stomach injury in mice by increasing ADH and resisting oxidative stress.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases, Alcoholic , Animals , Ethanol , Liver/metabolism , Mice , Oxidative Stress , Stomach
20.
Biomed Chromatogr ; 34(6): e4818, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32110832

ABSTRACT

A rapid, sensitive, and accurate ultra flow liquid chromatography tandem mass spectrometry (UFLC-MS/MS ) method was developed and validated for simultaneous quantitation of glycyrrhetic acid and puerarin in plasma derived from healthy and alcoholic liver injury rats. Plasma samples from healthy and model rats were deproteinated with methanol using liquiritin as an internal standard. Chromatography separation was performed by a Waters BEH (ethylene-bridged hybrid) C18 column (2.1 × 50 mm; 1.7 µm) using a gradient elution from acetonitrile and water (containing 0.1% formic acid) and at a flow rate of 0.4 mL/min. Quantitation was performed on a Triple Quad 4500 tandem mass spectrometer coupled with an electrospray ionization source in negative multiple reaction monitoring mode. Specificity, carryover, dilution integrity, recovery, linearity, precision and accuracy, matrix effect, and stability were within acceptable limits. The newly established method was successfully applied to a pharmacokinetics study to investigate glycyrrhetic acid and puerarin in healthy and alcoholic liver injury rats.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Chromatography, High Pressure Liquid/methods , Glycyrrhetinic Acid/blood , Isoflavones/blood , Tandem Mass Spectrometry/methods , Animals , Ethanol/adverse effects , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/pharmacokinetics , Isoflavones/chemistry , Isoflavones/pharmacokinetics , Limit of Detection , Linear Models , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL