Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Proc Natl Acad Sci U S A ; 120(21): e2218308120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37192163

ABSTRACT

Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.


Subject(s)
Hominidae , Neanderthals , Male , Animals , Humans , Neanderthals/genetics , Semen , Hominidae/genetics , Alleles , Gene Expression Regulation , Genome, Human
2.
Am J Hum Genet ; 105(6): 1254-1261, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31809748

ABSTRACT

Recent work has demonstrated that two archaic human groups (Neanderthals and Denisovans) interbred with modern humans and contributed to the contemporary human gene pool. These findings relied on the availability of high-coverage genomes from both Neanderthals and Denisovans. Here we search for evidence of archaic admixture from a worldwide panel of 1,667 individuals using an approach that does not require the presence of an archaic human reference genome. We find no evidence for archaic admixture in the Andaman Islands, as previously claimed, or on the island of Flores, where Homo floresiensis fossils have been found. However, we do find evidence for at least one archaic admixture event in sub-Saharan Africa, with the strongest signal in Khoesan and Pygmy individuals from Southern and Central Africa. The locations of these putative archaic admixture tracts are weighted against functional regions of the genome, consistent with the long-term effects of purifying selection against introgressed genetic material.


Subject(s)
Black People/genetics , Fossils , Genetics, Population , Genome, Human , Hominidae/genetics , Neanderthals/genetics , Animals , Gene Pool , Humans
3.
J Mol Evol ; 90(2): 149-165, 2022 04.
Article in English | MEDLINE | ID: mdl-35165762

ABSTRACT

TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.


Subject(s)
Antigens, Neoplasm , DNA-Binding Proteins , Animals , Antigens, Neoplasm/genetics , DNA , DNA-Binding Proteins/genetics
4.
Yi Chuan ; 44(5): 362-369, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35729694

ABSTRACT

Recent success in the retrieval of nuclear DNA of ancient humans and animals from cave sediments paves the way for genome-wide studies of past populations directly from sediments. In three studies, nuclear genomes of different species were obtained from the sediments of multiple archeological caves and their genetic histories were revealed, including an unknown population replacement of Neanderthals from Estatuas cave in Spain, which was recovered using a new DNA capture approach. By extending sediments as a source of DNA beyond fossils, this breakthrough is of particular significance to the field of ancient human genomics, which brings about more possibilities for exploring the history of past population migration, evolution and adaptation within larger time-scales and geographical areas where no fossil remains exist. Here, we mainly review the significance of the technical advances in retrieving ancient nuclear DNA from sediments and present new insights into the genetic history of Neanderthals revealed by this technique. By combining ancient genomes retrieved from fossils and additional mitochondrial DNA extracted from sediments of archaeological sites, we may begin investigating diverse archaic populations and examine their genetic relationships, movements and replacements in detail.


Subject(s)
Hominidae , Neanderthals , Animals , DNA, Ancient , DNA, Mitochondrial/genetics , Genome, Human , Hominidae/genetics , Humans , Neanderthals/genetics
5.
Am J Hum Genet ; 103(1): 45-57, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29937092

ABSTRACT

The progesterone receptor (PGR) plays a central role in maintaining pregnancy and is significantly associated with medical conditions such as preterm birth that affects 12.6% of all the births in U.S. PGR has been evolving rapidly since the common ancestor of human and chimpanzee, and we herein investigated evolutionary dynamics of PGR during recent human migration and population differentiation. Our study revealed substantial population differentiation at the PGR locus driven by natural selection, where very recent positive selection in East Asians has substantially decreased its genetic diversity by nearly fixing evolutionarily novel alleles. On the contrary, in European populations, the PGR locus has been promoted to a highly polymorphic state likely due to balancing selection. Integrating transcriptome data across multiple tissue types together with large-scale genome-wide association data for preterm birth, our study demonstrated the consequence of the selection event in East Asians on remodeling PGR expression specifically in the ovary and determined a significant association of early spontaneous preterm birth with the evolutionarily selected variants. To reconstruct its evolutionary trajectory on the human lineage, we observed substantial differentiation between modern and archaic humans at the PGR locus, including fixation of a deleterious missense allele in the Neanderthal genome that was later introgressed in modern human populations. Taken together, our study revealed substantial evolutionary innovation in PGR even during very recent human evolution, and its different forms among human populations likely result in differential susceptibility to progesterone-associated disease conditions including preterm birth.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Receptors, Progesterone/genetics , Selection, Genetic/genetics , Alleles , Animals , Asian People/genetics , Female , Genome-Wide Association Study/methods , Humans , Neanderthals
6.
Am J Phys Anthropol ; 169(2): 227-239, 2019 06.
Article in English | MEDLINE | ID: mdl-30889271

ABSTRACT

OBJECTIVES: Modern humans are thought to have interbred with Neanderthals in the Near East soon after modern humans dispersed out of Africa. This introgression event likely took place in either the Levant or southern Arabia depending on the dispersal route out of Africa that was followed. In this study, we compare Neanderthal introgression in contemporary Levantine and southern Arabian populations to investigate Neanderthal introgression and to study Near Eastern population history. MATERIALS AND METHODS: We analyzed genotyping data on >400,000 autosomal SNPs from seven Levantine and five southern Arabian populations and compared these data to those from populations from around the world including Neanderthal and Denisovan genomes. We used f4 and D statistics to estimate and compare levels of Neanderthal introgression between Levantine, southern Arabian, and comparative global populations. We also identified 1,581 putative Neanderthal-introgressed SNPs within our dataset and analyzed their allele frequencies as a means to compare introgression patterns in Levantine and southern Arabian genomes. RESULTS: We find that Levantine and southern Arabian populations have similar levels of Neanderthal introgression to each other but lower levels than other non-Africans. Furthermore, we find that introgressed SNPs have very similar allele frequencies in the Levant and southern Arabia, which indicates that Neanderthal introgression is similarly distributed in Levantine and southern Arabian genomes. DISCUSSION: We infer that the ancestors of contemporary Levantine and southern Arabian populations received Neanderthal introgression prior to separating from each other and that there has been extensive gene flow between these populations.


Subject(s)
Genetics, Population , Human Migration/history , Neanderthals/genetics , Animals , Arabia , Gene Flow/genetics , Gene Frequency/genetics , History, Ancient , Humans , Middle East , Polymorphism, Single Nucleotide/genetics
7.
Hum Biol ; 89(1): 67-80, 2017 01.
Article in English | MEDLINE | ID: mdl-29285970

ABSTRACT

Human populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent "wave" of larger effective population sizes, found in both African and non-African populations, that appears to reflect events prior to the last 100,000 years. I carried out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have visible effects on the inference of effective population size.


Subject(s)
Computer Simulation , Genetic Variation/genetics , Hominidae/genetics , Population Density , Animals , Gene Flow , Genetic Drift , Genetics, Population , History, Ancient , Humans , Models, Genetic , Selection, Genetic
8.
Front Psychol ; 14: 1257390, 2023.
Article in English | MEDLINE | ID: mdl-38022957

ABSTRACT

Music is widely recognised as a human universal, yet there is no agreed explanation for its function, or why and when it evolved. I summarise experimental evidence that the primary function of musicking lies in social bonding, both at the dyadic and community levels, via the effect that performing any form of music has on the brain's endorphin system (the principal neurohormonal basis for social bonding in primates). The many other functions associated with music-making (mate choice, pleasure, coalition signalling, etc) are all better understood as derivative of this, either as secondary selection pressures or as windows of evolutionary opportunity (exaptations). If music's function is primarily as an adjunct of the social bonding mechanism (a feature it shares with laughter, feasting, storytelling and the rituals of religion), then reverse engineering the problem suggests that the capacity for music-making most likely evolved with the appearance of archaic humans. This agrees well with anatomical evidence for the capacity to sing.

9.
Biomed J ; 46(2): 100584, 2023 04.
Article in English | MEDLINE | ID: mdl-36796758

ABSTRACT

Since the publication of the first ancient DNA sequence in 1984, experimental methods used to recover ancient DNA have advanced greatly, illuminating previously unknown branches of the human family tree and opening up several promising new avenues for future studies of human evolution. The 2022 Nobel Prize in Physiology or Medicine was awarded to Svante Pääbo, director of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, for his work on ancient DNA and human evolution. On his first day back at work, he was thrown in the pond as part of his institute's tradition of celebrating award winners.


Subject(s)
Medicine , Nobel Prize , Male , Humans , DNA, Ancient , Genome, Human/genetics , Germany
10.
Front Genet ; 12: 662239, 2021.
Article in English | MEDLINE | ID: mdl-34079582

ABSTRACT

Gene regulatory factors (GRFs), such as transcription factors, co-factors and histone-modifying enzymes, play many important roles in modifying gene expression in biological processes. They have also been proposed to underlie speciation and adaptation. To investigate potential contributions of GRFs to primate evolution, we analyzed GRF genes in 27 publicly available primate genomes. Genes coding for zinc finger (ZNF) proteins, especially ZNFs with a Krüppel-associated box (KRAB) domain were the most abundant TFs in all genomes. Gene numbers per TF family differed between all species. To detect signs of positive selection in GRF genes we investigated more than 3,000 human GRFs with their more than 70,000 orthologs in 26 non-human primates. We implemented two independent tests for positive selection, the branch-site-model of the PAML suite and aBSREL of the HyPhy suite, focusing on the human and great ape branch. Our workflow included rigorous procedures to reduce the number of false positives: excluding distantly similar orthologs, manual corrections of alignments, and considering only genes and sites detected by both tests for positive selection. Furthermore, we verified the candidate sites for selection by investigating their variation within human and non-human great ape population data. In order to approximately assign a date to positively selected sites in the human lineage, we analyzed archaic human genomes. Our work revealed with high confidence five GRFs that have been positively selected on the human lineage and one GRF that has been positively selected on the great ape lineage. These GRFs are scattered on different chromosomes and have been previously linked to diverse functions. For some of them a role in speciation and/or adaptation can be proposed based on the expression pattern or association with human diseases, but it seems that they all contributed independently to human evolution. Four of the positively selected GRFs are KRAB-ZNF proteins, that induce changes in target genes co-expression and/or through arms race with transposable elements. Since each positively selected GRF contains several sites with evidence for positive selection, we suggest that these GRFs participated pleiotropically to phenotypic adaptations in humans.

11.
Genetics ; 215(3): 799-812, 2020 07.
Article in English | MEDLINE | ID: mdl-32487519

ABSTRACT

Admixture with archaic hominins has altered the landscape of genomic variation in modern human populations. Several gene regions have been identified previously as candidates of adaptive introgression (AI) that facilitated human adaptation to specific environments. However, simulation-based studies have suggested that population genetic processes other than adaptive mutations, such as heterosis from recessive deleterious variants private to populations before admixture, can also lead to patterns in genomic data that resemble AI. The extent to which the presence of deleterious variants affect the false-positive rate and the power of current methods to detect AI has not been fully assessed. Here, we used extensive simulations under parameters relevant for human evolution to show that recessive deleterious mutations can increase the false positive rates of tests for AI compared to models without deleterious variants, especially when the recombination rates are low. We next examined candidates of AI in modern humans identified from previous studies, and show that 24 out of 26 candidate regions remain significant, even when deleterious variants are included in the null model. However, two AI candidate genes, HYAL2 and HLA, are particularly susceptible to high false positive signals of AI due to recessive deleterious mutations. These genes are located in regions of the human genome with high exon density together with low recombination rate, factors that we show increase the rate of false-positives due to recessive deleterious mutations. Although the combination of such parameters is rare in the human genome, caution is warranted in such regions, as well as in other species with more compact genomes and/or lower recombination rates. In sum, our results suggest that recessive deleterious mutations cannot account for the signals of AI in most, but not all, of the top candidates for AI in humans, suggesting they may be genuine signals of adaptation.


Subject(s)
Genes, Recessive , Genetic Introgression , Models, Genetic , Mutation , Population/genetics , Adaptation, Physiological , Cell Adhesion Molecules/genetics , Computer Simulation/standards , Evolution, Molecular , GPI-Linked Proteins/genetics , Genome, Human , HLA Antigens/genetics , Humans , Hyaluronoglucosaminidase/genetics
12.
Cells ; 9(1)2019 12 24.
Article in English | MEDLINE | ID: mdl-31878147

ABSTRACT

High coverage sequences of archaic humans enabled the reconstruction of their DNA methylation patterns. This allowed comparing gene regulation between human groups, and linking such regulatory changes to phenotypic differences. In a previous work, a detailed comparison of DNA methylation in modern humans, archaic humans, and chimpanzees revealed 873 modern human-derived differentially methylated regions (DMRs). To understand the regulatory implications of these DMRs, we defined differentially methylated genes (DMGs) as genes that harbor DMRs in their promoter or gene body. While most of the modern human-derived DMRs could be linked to DMGs, many others remained unassigned. Here, we used information on 3D genome organization to link ~70 out of the remaining 288 unassigned DMRs to genes. Combined with the previously identified DMGs, we reinforce the enrichment of these genes with vocal and facial anatomy, and additionally find significant enrichment with the spinal column, chin, hair, and scalp. These results reveal the importance of 3D genomic organization in understanding gene regulation by DNA methylation.


Subject(s)
Head/anatomy & histology , Hominidae/genetics , Spinal Cord/anatomy & histology , Animals , DNA Methylation/genetics , DNA, Ancient/analysis , Databases, Genetic , Epigenesis, Genetic/genetics , Genome/genetics , Genomics/methods , Humans , Neanderthals/genetics , Promoter Regions, Genetic/genetics
13.
Investig Genet ; 6: 4, 2015.
Article in English | MEDLINE | ID: mdl-25937886

ABSTRACT

For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next- or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research.

SELECTION OF CITATIONS
SEARCH DETAIL