Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.279
Filter
Add more filters

Publication year range
1.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37804830

ABSTRACT

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Subject(s)
Arginine , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Arginine/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Lipid Metabolism , Liver Neoplasms/metabolism
2.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32169217

ABSTRACT

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Subject(s)
Arabidopsis/metabolism , Protein Transport/physiology , Twin-Arginine-Translocation System/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Organelle Biogenesis , Organelles/metabolism , Phase Transition , Plant Proteins/metabolism , Thylakoids/metabolism , Twin-Arginine-Translocation System/physiology
3.
Cell ; 173(3): 706-719.e13, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677514

ABSTRACT

Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.


Subject(s)
Arginine/chemistry , RNA-Binding Protein FUS/chemistry , beta Karyopherins/chemistry , Active Transport, Cell Nucleus , Amino Acid Motifs , Cytoplasm/metabolism , DNA Methylation , DNA, Complementary/metabolism , Densitometry , Frontotemporal Lobar Degeneration/metabolism , HeLa Cells , Homeostasis , Humans , Karyopherins/chemistry , Magnetic Resonance Spectroscopy , Methylation , Molecular Chaperones/chemistry , Mutation , Neurodegenerative Diseases/metabolism , Protein Binding , Protein Domains
4.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677515

ABSTRACT

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Subject(s)
Arginine/chemistry , Molecular Chaperones/chemistry , RNA-Binding Protein FUS/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cations , DNA Methylation , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/metabolism , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Protein Structure, Secondary , RNA-Binding Protein FUS/metabolism , Tyrosine/chemistry , Xenopus laevis
5.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759626

ABSTRACT

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Subject(s)
Arginine , Cysteine , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , Proteome , Humans , Cysteine/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Proteome/metabolism , Arginine/metabolism , Mutation , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cisplatin/pharmacology , Cell Line, Tumor , Proteomics/methods , Gene Expression Regulation, Neoplastic , Cell Survival/drug effects , RNA, Transfer/metabolism , RNA, Transfer/genetics
6.
Cell ; 167(3): 829-842.e13, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27745970

ABSTRACT

Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.


Subject(s)
Arginine/metabolism , CD4-Positive T-Lymphocytes/immunology , Immunomodulation , Lymphocyte Activation , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , Glycolysis , Humans , Immunologic Memory , Metabolome , Mice , Mice, Inbred BALB C , Oxidative Phosphorylation , Proteome , Transcription Factors/metabolism , Transcription, Genetic
7.
Mol Cell ; 83(14): 2449-2463.e13, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37402367

ABSTRACT

Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.


Subject(s)
RNA , Transcription Factors , Transcription Factors/metabolism , RNA/metabolism , Binding Sites , Protein Binding , DNA/genetics
8.
Annu Rev Biochem ; 84: 685-709, 2015.
Article in English | MEDLINE | ID: mdl-26034892

ABSTRACT

Hv1 is a voltage-gated proton-selective channel that plays critical parts in host defense, sperm motility, and cancer progression. Hv1 contains a conserved voltage-sensor domain (VSD) that is shared by a large family of voltage-gated ion channels, but it lacks a pore domain. Voltage sensitivity and proton conductivity are conferred by a unitary VSD that consists of four transmembrane helices. The architecture of Hv1 differs from that of cation channels that form a pore in the center among multiple subunits (as in most cation channels) or homologous repeats (as in voltage-gated sodium and calcium channels). Hv1 forms a dimer in which a cytoplasmic coiled coil underpins the two protomers and forms a single, long helix that is contiguous with S4, the transmembrane voltage-sensing segment. The closed-state structure of Hv1 was recently solved using X-ray crystallography. In this article, we discuss the gating mechanism of Hv1 and focus on cooperativity within dimers and their sensitivity to metal ions.


Subject(s)
Ion Channels/chemistry , Ion Channels/metabolism , Animals , Crystallography, X-Ray , Humans , Models, Molecular
9.
Annu Rev Biochem ; 84: 843-64, 2015.
Article in English | MEDLINE | ID: mdl-25494301

ABSTRACT

The twin-arginine translocation (Tat) system, found in prokaryotes, chloroplasts, and some mitochondria, allows folded proteins to be moved across membranes. How this transport is achieved without significant ion leakage is an intriguing mechanistic question. Tat transport is mediated by complexes formed from small integral membrane proteins from just two protein families. Atomic-resolution structures have recently been determined for representatives of both these protein families, providing the first molecular-level glimpse of the Tat machinery. I review our current understanding of the mechanism of Tat transport in light of these new structural data.


Subject(s)
Protein Transport , Twin-Arginine-Translocation System/metabolism , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Chloroplasts/metabolism , Mitochondria/metabolism , Prokaryotic Cells/metabolism , Proton-Motive Force , Twin-Arginine-Translocation System/chemistry
10.
Mol Cell ; 81(15): 3171-3186.e8, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34171297

ABSTRACT

Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arginine/metabolism , Host-Pathogen Interactions/physiology , Immunity, Innate/physiology , Protein-Arginine N-Methyltransferases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , DEAD Box Protein 58/metabolism , Fibroblasts/virology , HEK293 Cells , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpes Simplex/virology , Humans , Methylation , Mice , Mice, Knockout , Polyunsaturated Alkamides , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/immunology , Receptors, Immunologic/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Respirovirus Infections/virology , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33539787

ABSTRACT

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Subject(s)
Brain Neoplasms , Carcinogenesis , Cell Cycle Proteins , Glioblastoma , Guanine Nucleotide Exchange Factors , Mitosis/radiation effects , Neoplasm Proteins , Nuclear Proteins , Protein-Arginine N-Methyltransferases , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/radiotherapy , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/radiation effects , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Male , Mice , Mitosis/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction/genetics , Signal Transduction/radiation effects , Xenograft Model Antitumor Assays
12.
Mol Cell ; 81(21): 4357-4368, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34619091

ABSTRACT

Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.


Subject(s)
Arginine/chemistry , Methylation , Neoplasms/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Alternative Splicing , Animals , B7-H1 Antigen/metabolism , CRISPR-Cas Systems , Cell Communication , Cell Line, Tumor , DNA Damage , DNA Repair , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , Histones , Humans , Immune System , Immunotherapy/methods , Mice , Mice, Knockout , Protein-Arginine N-Methyltransferases/chemistry , RNA Splicing , RNA, Messenger/metabolism , Signal Transduction
13.
Mol Cell ; 81(17): 3481-3495.e7, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34358446

ABSTRACT

PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.


Subject(s)
Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/physiology , Animals , Cell Line, Tumor , Cytoplasm/metabolism , Female , HCT116 Cells , HEK293 Cells , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ion Channels/metabolism , Male , Methylation , Mice , Mice, Nude , Nuclear Proteins/metabolism , Peptides/genetics , Protein Binding , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Spliceosomes/metabolism
14.
Immunity ; 51(2): 272-284.e7, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31399282

ABSTRACT

Macrophage polarization is accompanied by drastic changes in L-arginine metabolism. Two L-arginine catalytic enzymes, iNOS and arginase 1, are well-characterized hallmark molecules of classically and alternatively activated macrophages, respectively. The third metabolic fate of L-arginine is the generation of creatine that acts as a key source of cellular energy reserve, yet little is known about the role of creatine in the immune system. Here, genetic, genomic, metabolic, and immunological analyses revealed that creatine reprogrammed macrophage polarization by suppressing M(interferon-γ [IFN-γ]) yet promoting M(interleukin-4 [IL-4]) effector functions. Mechanistically, creatine inhibited the induction of immune effector molecules, including iNOS, by suppressing IFN-γ-JAK-STAT1 transcription-factor signaling while supporting IL-4-STAT6-activated arginase 1 expression by promoting chromatin remodeling. Depletion of intracellular creatine by ablation of the creatine transporter Slc6a8 altered macrophage-mediated immune responses in vivo. These results uncover a previously uncharacterized role for creatine in macrophage polarization by modulating cellular responses to cytokines such as IFN-γ and IL-4.


Subject(s)
Arginine/metabolism , Creatine/metabolism , Liver Cirrhosis/metabolism , Macrophages/physiology , Membrane Transport Proteins/metabolism , Animals , Cell Differentiation , Cells, Cultured , Cellular Reprogramming , Humans , Immunity, Cellular , Interferon-gamma/metabolism , Liver Cirrhosis/chemically induced , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Signal Transduction , Tetrachloroethylene
15.
EMBO J ; 42(6): e112647, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36740997

ABSTRACT

Neurogenesis in the developing and adult brain is intimately linked to remodeling of cellular metabolism. However, it is still unclear how distinct metabolic programs and energy sources govern neural stem cell (NSC) behavior and subsequent neuronal differentiation. Here, we found that adult mice lacking the mitochondrial urea metabolism enzyme, Arginase-II (Arg-II), exhibited NSC overactivation, thereby leading to accelerated NSC pool depletion and decreased hippocampal neurogenesis over time. Mechanistically, Arg-II deficiency resulted in elevated L-arginine levels and induction of a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) caused by impaired attachment of hexokinase-I to mitochondria. Notably, selective inhibition of OXPHOS ameliorated NSC overactivation and restored abnormal neurogenesis in Arg-II deficient mice. Therefore, Arg-II-mediated intracellular L-arginine homeostasis directly influences the metabolic fitness of neural stem cells that is essential to maintain neurogenesis with age.


Subject(s)
Neural Stem Cells , Mice , Animals , Cell Proliferation , Neural Stem Cells/metabolism , Neurogenesis/physiology , Glycolysis , Homeostasis , Arginine/metabolism
16.
Mol Cell ; 74(5): 922-935.e6, 2019 06 06.
Article in English | MEDLINE | ID: mdl-30979585

ABSTRACT

Enteropathogenic E. coli NleB and related type III effectors catalyze arginine GlcNAcylation of death domain (DD) proteins to block host defense, but the underlying mechanism is unknown. Here we solve crystal structures of NleB alone and in complex with FADD-DD, UDP, and Mn2+ as well as NleB-GlcNAcylated DDs of TRADD and RIPK1. NleB adopts a GT-A fold with a unique helix-pair insertion to hold FADD-DD; the interface contacts explain the selectivity of NleB for certain DDs. The acceptor arginine is fixed into a cleft, in which Glu253 serves as a base to activate the guanidinium. Analyses of the enzyme-substrate complex and the product structures reveal an inverting sugar-transfer reaction and a detailed catalytic mechanism. These structural insights are validated by mutagenesis analyses of NleB-mediated GlcNAcylation in vitro and its function in mouse infection. Our study builds a structural framework for understanding of NleB-catalyzed arginine GlcNAcylation of host death domain.


Subject(s)
Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Host-Pathogen Interactions/genetics , Protein Conformation , Virulence Factors/chemistry , Animals , Apoptosis/genetics , Arginine/chemistry , Arginine/genetics , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/genetics , Crystallography, X-Ray , Death Domain/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/genetics , Guanidine/chemistry , Humans , Manganese/chemistry , Mice , Mutagenesis , TNF Receptor-Associated Death Domain Protein/chemistry , TNF Receptor-Associated Death Domain Protein/genetics , Virulence Factors/genetics
17.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30472187

ABSTRACT

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Subject(s)
Breast Neoplasms/enzymology , Protein Processing, Post-Translational , RNA Polymerase II/metabolism , Transcription, Genetic , Arginine , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Citrullination , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Domains , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Signal Transduction
18.
Mol Cell ; 76(5): 767-783.e11, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31540874

ABSTRACT

Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.


Subject(s)
Cell Nucleolus/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Active Transport, Cell Nucleus , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/ultrastructure , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Nucleic Acid Conformation , Protein Binding , Protein Interaction Domains and Motifs , RNA Precursors/genetics , RNA Precursors/ultrastructure , RNA, Ribosomal/genetics , RNA, Ribosomal/ultrastructure
19.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38602916

ABSTRACT

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Subject(s)
Arginine , Ligases , Arginine/metabolism , Citrulline/metabolism , Ammonia , Ornithine/genetics , Adenosine Triphosphate/metabolism , Phosphates , Adenosine , Catalysis
20.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753512

ABSTRACT

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Subject(s)
Benzhydryl Compounds , Neurons , Phenols , Sex Differentiation , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Female , Male , Mice , Sex Differentiation/drug effects , Neurons/drug effects , Neurons/metabolism , Pregnancy , Hypothalamus/metabolism , Hypothalamus/drug effects , Neurogenesis/drug effects , Arginine Vasopressin/metabolism , Vasopressins/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Mice, Inbred C57BL , Estrogens/metabolism , Estrogens/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL