Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 35(1-2): 133-146, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334822

ABSTRACT

The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues.


Subject(s)
Adipose Tissue/physiology , Autocrine Communication/genetics , Fibroblast Growth Factors/genetics , Gene Expression Regulation/genetics , Signal Transduction/genetics , Adipocytes/metabolism , Adiponectin/metabolism , Adipose Tissue/physiopathology , Animals , Endocrine System/metabolism , Energy Metabolism/genetics , Feedback, Physiological/physiology , Fibroblast Growth Factors/blood , Hepatocytes/metabolism , Insulin Resistance/genetics , Liver/metabolism , MAP Kinase Kinase 4/deficiency , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System/physiology , Mice
2.
Rev Physiol Biochem Pharmacol ; 186: 177-198, 2023.
Article in English | MEDLINE | ID: mdl-36472676

ABSTRACT

Alveolar macrophages (AMs) are extremely versatile cells with complex functions involved in health or diseases such as pneumonia, asthma, and pulmonary alveolar proteinosis. In recent years, it has been widely identified that the different functions and states of macrophages are the results from the complex interplay between microenvironmental signals and macrophage lineage. Diverse and complicated signals to which AMs respond are mentioned when they are described individually or in a particular state of AMs. In this review, the microenvironmental signals are divided into autocrine, paracrine, and endocrine signals based on their secreting characteristics. This new perspective on classification provides a more comprehensive and systematic introduction to the complex signals around AMs and is helpful for understanding the roles of AMs affected by physiological environment. The existing possible treatments of AMs are also mentioned in it. The thorough understanding of AMs signals modulation may be contributed to the development of more effective therapies for AMs-related lung diseases.


Subject(s)
Asthma , Lung Diseases , Pulmonary Alveolar Proteinosis , Humans , Macrophages, Alveolar , Macrophages
3.
J Dairy Sci ; 107(9): 7435-7445, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38788842

ABSTRACT

The presence of an autocrine factor in milk that can trigger mammary gland involution was proposed more than 50 yr ago. To provide evidence for the existence of one or more autocrine factors, 10 multiparous cows in late lactation were quarter-milked for 7 d. Following this baseline period, the right front quarter of each cow was left unmilked, and the other quarters were milked for 7 d. Before the last milking of that period, milk (mammary secretions) was collected aseptically from both front quarters. After that milking, 250 mL of the collected samples were infused in the cows' respective rear quarters. No quarters were milked for the following 7 d (milk stasis period), and quarter milking was then resumed in all quarters for the last 7 d of the experiment (remilking period). Quarter milk samples were collected during the baseline period, before the milk stasis period, and during the remilking period. These samples were used for measuring milk components and the concentration of involution markers (SCC, BSA, and lactoferrin). Samples of mammary secretions were collected manually from the quarters during the milk stasis period for involution marker determination. We extracted RNA from samples collected from front quarters before the last milking before the milk stasis period for microRNA (miRNA) determination. As anticipated, the longer milk stasis period implemented for the right front quarter resulted in a more advanced involution than in the left front quarter, based on the concentration of involution markers in the mammary secretions, lower milk production recovery, and changes in milk composition during the remilking period. All 3 involution marker concentrations in the mammary secretions increased in both rear quarters, but were greater in the right quarter secretions than in the left quarter secretions. Resuming milking reinitiated milk production in all quarters, but milk production recovery in the right rear quarters was less robust than that in the left rear quarters (54.3 ± 1.4% vs. 61.6 ± 1.4%, respectively). Milk from the quarters infused with mammary secretions (right rear) had a lower lactose content, but a higher milk protein content and higher SCC than the quarters infused with milk. We detected a total of 359 miRNAs, 76 of which were differentially expressed in milk and mammary secretions. Expression of bta-miR-221 and bta-miR-223 was upregulated in mammary secretions 34- and 40-fold, respectively. The results of the present experiment support the contention that milk stasis leads to the accumulation of one or more factors that trigger involution. The results also indicate that milk stasis leads to changes in the miRNA profile of the milk, but whether such changes are a cause or a consequence of the involution process remains to be established.


Subject(s)
Lactation , Mammary Glands, Animal , MicroRNAs , Milk , Animals , Female , Mammary Glands, Animal/metabolism , Milk/chemistry , Milk/metabolism , Cattle
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396907

ABSTRACT

Plasma concentrations of a pleiotropic cytokine, interleukin (IL)-6, are increased in patients with cardiac myxoma. We investigated the regulation of IL-6 in cardiac myxoma. Immunohistochemical staining and reverse transcription-polymerase chain reaction (RT-PCR) revealed that IL-6 and its receptors, IL-6 receptor (IL-6R) and gp130, co-existed in the myxoma cells. Myxoma cells were cultured, and an antibody array assay showed that a conditioned medium derived from the cultured myxoma cells contained increased amounts of IL-6. Signal transducer and activator of transcription (STAT) 3 and Akt were constitutively phosphorylated in the myxoma cells. An enzyme-linked immunosorbent assay (ELISA) showed that the myxoma cells spontaneously secreted IL-6 into the culture medium. Real-time PCR revealed that stimulation with IL-6 + soluble IL-6R (sIL6R) significantly increased IL-6 mRNA in the myxoma cells. Pharmacological inhibitors of STAT3 and Akt inhibited the IL-6 + sIL-6R-induced gene expression of IL-6 and the spontaneous secretion of IL-6. In addition, IL-6 + sIL-6R-induced translocation of phosphorylated STAT3 to the nucleus was also blocked by STAT3 inhibitors. This study has demonstrated that IL-6 increases its own production via STAT3 and Akt pathways in cardiac myxoma cells. Autocrine regulation of IL-6 may play an important role in the pathophysiology of patients with cardiac myxoma.


Subject(s)
Interleukin-6 , Myxoma , Humans , Cells, Cultured , Interleukin-6/metabolism , Myxoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Interleukin-6/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism
5.
J Virol ; 96(17): e0070622, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000839

ABSTRACT

Rotavirus infects intestinal epithelial cells and is the leading cause of gastroenteritis in infants worldwide. Upon viral infection, intestinal cells produce type I and type III interferons (IFNs) to alert the tissue and promote an antiviral state. These two types of IFN bind to different receptors but induce similar pathways that stimulate the activation of interferon-stimulated genes (ISGs) to combat viral infection. In this work, we studied the spread of a fluorescent wild-type (WT) SA11 rotavirus in human colorectal cancer cells lacking specific interferon receptors and compared it to that of an NSP1 mutant rotavirus that cannot interfere with the host intrinsic innate immune response. We could show that the WT rotavirus efficiently blocks the production of type I IFNs but that type III IFNs are still produced, whereas the NSP1 mutant rotavirus allows the production of both. Interestingly, while both exogenously added type I and type III IFNs could efficiently protect cells against rotavirus infection, endogenous type III IFNs were found to be key to limit infection of human intestinal cells by rotavirus. By using a fluorescent reporter cell line to highlight the cells mounting an antiviral program, we could show that paracrine signaling driven by type III IFNs efficiently controls the spread of both WT and NSP1 mutant rotavirus. Our results strongly suggest that NSP1 efficiently blocks the type I IFN-mediated antiviral response; however, its restriction of the type III IFN-mediated one is not sufficient to prevent type III IFNs from partially inhibiting viral spread in intestinal epithelial cells. Additionally, our findings further highlight the importance of type III IFNs in controlling rotavirus infection, which could be exploited as antiviral therapeutic measures. IMPORTANCE Rotavirus is one of the most common causes of gastroenteritis worldwide. In developing countries, rotavirus infections lead to more than 200,000 deaths in infants and children. The intestinal epithelial cells lining the gastrointestinal tract combat rotavirus infection by two key antiviral compounds known as type I and III interferons. However, rotavirus has developed countermeasures to block the antiviral actions of the interferons. In this work, we evaluated the arms race between rotavirus and type I and III interferons. We determined that although rotavirus could block the induction of type I interferons, it was unable to block type III interferons. The ability of infected cells to produce and release type III interferons leads to the protection of the noninfected neighboring cells and the clearance of rotavirus infection from the epithelium. This suggests that type III interferons are key antiviral agents and could be used to help control rotavirus infections in children.


Subject(s)
Epithelial Cells , Interferons , Intestinal Mucosa , Rotavirus Infections , Rotavirus , Antiviral Agents/immunology , Child , Epithelial Cells/immunology , Epithelial Cells/virology , Gastroenteritis/virology , Humans , Immunity, Innate , Infant , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Interferons/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/virology , Mutation , Rotavirus/genetics , Rotavirus/growth & development , Rotavirus/immunology , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Viral Nonstructural Proteins/genetics
6.
Bioorg Chem ; 139: 106678, 2023 10.
Article in English | MEDLINE | ID: mdl-37354661

ABSTRACT

Appertaining to its paracrine and autocrine signaling loops, VEGFR-2 succeeded in grabbing attention as one of the leading targets in cancer treatment. Based on the foregoing and our comprehensive studies regarding pharmacophoric features and activity of sorafenib, novel phenylpyridazinone based VEGFR-2 inhibitors 4, 6a-e, 7a,b, 9a,b, 12a-c, 13a,b, 14a,b, 15a,b, and 17a-d were optimized. An assortment of biological assays was conducted to assess the antiangiogenic and apoptotic activities of the synthesized derivatives. In vitro VEGFR-2 kinase assay verified the inhibitory activity of the synthesized derivatives with IC50 values from 49.1 to 418.0 nM relative to the reference drug sorafenib (IC50 = 81.8 nM). Antiproliferative activity against HUVECs revealed that compounds 2-{2-[2-(6-oxo-3-phenylpyridazin-1(6H)-yl)acetyl]hydrazineyl}-N-(p-tolyl)acetamide (12c) and 2-[(5-mercapto-4-methyl-4H-1,2,4-triazol-3-yl)methyl]-6-phenylpyridazin-3(2H)-one (13a) possessed superior activity (IC50 values = 11.5 and 12.3 nM, respectively) in comparison to sorafenib (IC50 = 23.2 nM). For the purpose of appraising their antiproliferative effect, derivatives 12c and 13a were exposed to cell cycle analysis, apoptotic, cell invasion and migration assays in addition to determination of VEGFR-2 in protein level. Moreover, cytotoxicity as well as selectivity index against WI-38 cell line was measured to examine safety of derivatives 12c and 13a. After that, molecular docking study was executed on the top five compounds in the in vitro VEGFR-2 kinase assay 6d, 12c, 13a, 14a and 17c to get a deep perception on binding mode of the synthesized compounds and correlate the design strategy with biological results. Finally, physicochemical, pharmacokinetic properties, and drug-likeness studies were performed on the top five derivative in in vitro VEGFR-2 kinase assay.


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors , Sorafenib/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2
7.
Proc Natl Acad Sci U S A ; 117(32): 19435-19445, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32719131

ABSTRACT

The Ras/RAF/MEK/ERK pathway is an essential signaling cascade for various refractory cancers, such as those with mutant KRAS (mKRAS) and BRAF (mBRAF). However, there are unsolved ambiguities underlying mechanisms for this growth signaling thereby creating therapeutic complications. This study shows that a vital component of the pathway CRAF is directly impacted by an end product of the cascade, glutathione transferases (GST) P1 (GSTP1), driving a previously unrecognized autocrine cycle that sustains proliferation of mKRAS and mBRAF cancer cells, independent of oncogenic stimuli. The CRAF interaction with GSTP1 occurs at its N-terminal regulatory domain, CR1 motif, resulting in its stabilization, enhanced dimerization, and augmented catalytic activity. Consistent with the autocrine cycle scheme, silencing GSTP1 brought about significant suppression of proliferation of mKRAS and mBRAF cells in vitro and suppressed tumorigenesis of the xenografted mKRAS tumor in vivo. GSTP1 knockout mice showed significantly impaired carcinogenesis of mKRAS colon cancer. Consequently, hindering the autocrine loop by targeting CRAF/GSTP1 interactions should provide innovative therapeutic modalities for these cancers.


Subject(s)
Glutathione S-Transferase pi/metabolism , Neoplasms/pathology , Proto-Oncogene Proteins c-raf/metabolism , Animals , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Glutathione S-Transferase pi/antagonists & inhibitors , Glutathione S-Transferase pi/deficiency , Glutathione S-Transferase pi/genetics , Humans , Mice , Mice, Knockout , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Multimerization , Protein Stability , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction
8.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569715

ABSTRACT

We investigated the effects of the cytokine inhibitors IL-1 receptor antagonist (IL-1Ra) and soluble tumor necrosis factor receptor-1 (sTNFR1) on the extracellular matrix metabolism of human intervertebral discs (IVDs) and the roles of IL-1ß and TNF in the homeostasis of IVD cells. The 1.2% alginate beads and the explants obtained from 35 human lumbar discs were treated with cytokine inhibitors. Extracellular matrix metabolism was evaluated by proteoglycan (PG) and collagen syntheses and IL-1ß, TNF, and IL-6 expressions after three days of culture in the presence or absence of IL-1Ra, sTNFR1, and cycloheximide. Simultaneous treatment with IL-1Ra and sTNFR1 stimulated PG and collagen syntheses in the NP and AF cells and explants. The IL-1ß concentration was significantly correlated to the relative increase in PG synthesis in AF explants after simultaneous cytokine inhibitor treatment. The relative increase in PG synthesis induced by simultaneous cytokine treatment was significantly higher in an advanced grade of MRI. Expressions of IL-1ß and TNF were upregulated by each cytokine inhibitor, and simultaneous treatment suppressed IL-1ß and TNF productions. In conclusion, IL-1Ra and sTNFR1 have the potential to increase PG and collagen synthesis in IVDs. IL-1ß and TNF have a feedback pathway to maintain optimal expression, resulting in the control of homeostasis in IVD explants.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Cytokines/metabolism , Intervertebral Disc Degeneration/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/metabolism , Intervertebral Disc/metabolism , Extracellular Matrix/metabolism , Proteoglycans/metabolism , Receptors, Interleukin-1/metabolism , Collagen/metabolism
9.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298425

ABSTRACT

Hormone receptor-positive breast cancer (HR+ BC) cells depend on estrogen and its receptor, ER. Due to this dependence, endocrine therapy (ET) such as aromatase inhibitor (AI) treatment is now possible. However, ET resistance (ET-R) occurs frequently and is a priority in HR+ BC research. The effects of estrogen have typically been determined under a special culture condition, i.e., phenol red-free media supplemented with dextran-coated charcoal-stripped fetal bovine serum (CS-FBS). However, CS-FBS has some limitations, such as not being fully defined or ordinary. Therefore, we attempted to find new experimental conditions and related mechanisms to improve cellular estrogen responsiveness based on the standard culture medium supplemented with normal FBS and phenol red. The hypothesis of pleiotropic estrogen effects led to the discovery that T47D cells respond well to estrogen under low cell density and medium replacement. These conditions made ET less effective there. The fact that several BC cell culture supernatants reversed these findings implies that housekeeping autocrine factors regulate estrogen and ET responsiveness. Results reproduced in T47D subclone and MCF-7 cells highlight that these phenomena are general among HR+ BC cells. Our findings offer not only new insights into ET-R but also a new experimental model for future ET-R studies.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Estrogens/pharmacology , Aromatase Inhibitors/pharmacology , MCF-7 Cells , Phenolsulfonphthalein/pharmacology
10.
Pharmacol Res ; 177: 105961, 2022 03.
Article in English | MEDLINE | ID: mdl-34718135

ABSTRACT

Senescence suppresses tumor growth, while also developing a tumorigenic state in the nearby cells that is mediated by senescence-associated secretory phenotypes (SASPs). The dual function of cellular senescence stresses the need for identifying multi-targeted agents directed towards the promotion of cell senescence in cancer cells and suppression of the secretion of pro-tumorigenic signaling mediators in neighboring cells. Natural secondary metabolites have shown favorable anticancer responses in recent decades, as some have been found to target the senescence-associated mediators and pathways. Furthermore, phenolic compounds and polyphenols, terpenes and terpenoids, alkaloids, and sulfur-containing compounds have shown to be promising anticancer agents through the regulation of paracrine and autocrine pathways. Plant secondary metabolites are potential regulators of SASPs factors that suppress tumor growth through paracrine mediators, including growth factors, cytokines, extracellular matrix components/enzymes, and proteases. On the other hand, ataxia-telangiectasia mutated, ataxia-telangiectasia and Rad3-related, extracellular signal-regulated kinase/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, nuclear factor-κB, Janus kinase/signal transducer and activator of transcription, and receptor tyrosine kinase-associated mediators are main targets of candidate phytochemicals in the autocrine senescence pathway. Such a regulatory role of phytochemicals on senescence-associated pathways is associated with cell cycle arrest and the attenuation of apoptotic/inflammatory/oxidative stress pathways. The current systematic review highlights the critical roles of natural secondary metabolites in the attenuation of autocrine and paracrine cellular senescence pathways, while also elucidating the chemopreventive and chemotherapeutic capabilities of these compounds. Additionally, we discuss current challenges, limitations, and future research indications.


Subject(s)
Antineoplastic Agents , Ataxia Telangiectasia , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cellular Senescence , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Signal Transduction
11.
Proc Natl Acad Sci U S A ; 116(42): 21120-21130, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31570576

ABSTRACT

Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their ß- and γc-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti-IL-2 efficiently blocked IL-2-induced proliferation of IL-2-dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2-producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2-producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface.


Subject(s)
Cell Proliferation/physiology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-2/metabolism , Cell Line, Tumor , HeLa Cells , Humans , Interleukin-15/metabolism , Janus Kinase 1/metabolism , Janus Kinase 3/metabolism , Receptors, Interleukin-15/metabolism , Signal Transduction/physiology
12.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499024

ABSTRACT

We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.


Subject(s)
Neoplasms , Signal Transduction , Humans , Signal Transduction/physiology , Neoplasms/metabolism , Neurotransmitter Agents , Nervous System/metabolism
13.
J Infect Dis ; 223(5): 893-904, 2021 03 03.
Article in English | MEDLINE | ID: mdl-32702107

ABSTRACT

Regulatory T cells (Tregs) play a crucial role in modulating the inflammatory response and participated in sepsis-related immune dysfunctions. However, little is known about the regulatory mechanisms by which Tregs are kept in check during immune responses. Here, we verified the simultaneous expression of interleukin-3 (IL-3) and its receptor (IL-3R) in Tregs. Then, by modulation of IL-3 expression via lentiviral transduction-mediated small interfering RNA, we demonstrated that IL-3 negatively regulated Tregs activity via an autocrine mechanism. Furthermore, we found that anti-IL-3 antibody treatment significantly diminished inflammatory cytokines and organ injury, and improved survival in septic mice, which was associated with enhanced Treg percentage and function. Collectively, these results suggest that IL-3 negatively regulates the activity of Tregs in a previously unrecognized autocrine manner, and plays an important role in the excessive inflammatory response in sepsis, which might be utilized as a therapeutic strategy for the treatment of complications in sepsis.


Subject(s)
Interleukin-3/immunology , Sepsis , T-Lymphocytes, Regulatory , Animals , Cytokines , Mice , Sepsis/immunology , Sepsis/physiopathology , T-Lymphocytes, Regulatory/immunology
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(7): 765-770, 2022 Jul 15.
Article in Zh | MEDLINE | ID: mdl-35894191

ABSTRACT

OBJECTIVES: To study the value of autotaxin (an autocrine motility factor) level in serum and bronchoalveolar lavage fluid (BALF) in predicting refractory Mycoplasma pneumoniae pneumonia (RMPP) in children and its correlation with interleukin-6 (IL-6), interleukin-8 (IL-8), and C-reactive protein (CRP). METHODS: A retrospective analysis was performed on 238 children with Mycoplasma pneumoniae pneumonia who were admitted from January 2019 to December 2021. According to disease severity, they were divided into two groups: RMPP (n=82) and general Mycoplasma pneumoniae pneumonia (GMPP; n=156). The two groups were compared in terms of the levels of autotaxin, IL-6, IL-8, and CRP in serum and BALF to study the value of autotaxin level in serum and BALF in predicting RMPP in children, as well as the correlation of autotaxin level with IL-6, IL-8, and CRP in children with RMPP. RESULTS: Compared with the GMPP group, the RMPP group had significantly higher levels of autotaxin, IL-6, IL-8, and CRP in serum and BALF (P<0.05). For the children with RMPP, the levels of autotaxin, IL-6, IL-8, and CRP in serum and BALF in the acute stage were significantly higher than those in the convalescent stage (P<0.05). The receiver operating characteristic (ROC) curve showed that the level of autotaxin in serum and BALF had a good value in predicting RMPP in children, with an area under the curve of 0.874 (95%CI: 0.816-0.935) and 0.862 (95%CI: 0.802-0.924), respectively. The correlation analysis showed that the level of autotaxin in serum and BALF was positively correlated with IL-6, IL-8, and CRP levels (P<0.001). CONCLUSIONS: The level of autotaxin in serum and BALF increases and is correlated with the degree of disease recovery and inflammatory cytokines in children with RMPP. Autotaxin can be used as a predictive indicator for RMPP in children.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , C-Reactive Protein , Child , Cytokines , Humans , Interleukin-6 , Interleukin-8 , Pneumonia, Mycoplasma/diagnosis , Retrospective Studies
15.
Am J Respir Cell Mol Biol ; 65(6): 581-592, 2021 12.
Article in English | MEDLINE | ID: mdl-34186014

ABSTRACT

The airway epithelium is a central modulator of innate and adaptive immunity in the lung. IL17A expression was found to be increased in the airway epithelium; however, the role of epithelium-derived IL17A in chronic obstructive pulmonary disease (COPD) remains unclear. In this study, we aimed to determine whether epithelium-derived IL17A regulates inflammation and mucus hyperproduction in COPD by using a cultured human bronchial epithelial (HBE) cell line in vitro and an airway epithelium IL17A-specific knockout mouse in vivo. Increased IL17A expression was observed in the mouse airway epithelium upon cigarette smoke (CS) exposure or in a mouse model of COPD that was induced by using CS and Eln (elastin). CS extract (CSE) also triggered IL17A expression in HBE cells. Blocking IL17A or IL17RA (IL17 receptor A) effectively attenuated CSE-induced MUC5AC and the inflammatory cytokines IL6, TNF-α, and IL1ß in HBE cells, suggesting that IL17A mediates CSE-induced inflammation and mucin production in an autocrine manner. CSE activated p-JUN (phospho-JUN) and p-JNK (phospho-c-Jun N-terminal kinase), which were also reduced by IL17RA siRNA, and JUN siRNA attenuated CSE-induced IL6 and MUC5AC. In vivo, selective knockout of IL17A in the airway epithelium markedly reduced the neutrophilic infiltration in BAL fluid, peribronchial inflammation, proinflammatory mediators (CXCL1 [CXC ligand 1] and CXCL2), and mucus production in a COPD mouse model. We showed a novel function of airway epithelium-derived IL17A, which can act locally in an autocrine manner to amplify inflammation and increase mucus production in COPD pathogenesis.


Subject(s)
Cigarette Smoking/immunology , Interleukin-17/immunology , Mucus/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Respiratory Mucosa/immunology , Animals , Cell Line , Cigarette Smoking/genetics , Disease Models, Animal , Humans , Inflammation/genetics , Inflammation/immunology , Interleukin-17/genetics , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophils/immunology , Pulmonary Disease, Chronic Obstructive/genetics
16.
Immunology ; 163(4): 493-511, 2021 08.
Article in English | MEDLINE | ID: mdl-33835494

ABSTRACT

The impairment of the cystic fibrosis transmembrane conductance regulator (CFTR) activity induces intracellular chloride (Cl- ) accumulation. The anion Cl- , acting as a second messenger, stimulates the secretion of interleukin-1ß (IL-1ß), which starts an autocrine positive feedback loop. Here, we show that NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) are indirectly modulated by the intracellular Cl- concentration, showing maximal expression and activity at 75 mM Cl- , in the presence of the ionophores nigericin and tributyltin. The expression of PYD and CARD domain containing (PYCARD/ASC) remained constant from 0 to 125 mM Cl- . The CASP1 inhibitor VX-765 and the NLRP3 inflammasome inhibitor MCC950 completely blocked the Cl- -stimulated IL-1ß mRNA expression and partially the IL-1ß secretion. DCF fluorescence (cellular reactive oxygen species, cROS) and MitoSOX fluorescence (mitochondrial ROS, mtROS) also showed maximal ROS levels at 75 mM Cl- , a response strongly inhibited by the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase (NOX) inhibitor GKT137831. These inhibitors also affected CASP1 and NLRP3 mRNA and protein expression. More importantly, the serum/glucocorticoid regulated kinase 1 (SGK1) inhibitor GSK650394, or its shRNAs, completely abrogated the IL-1ß mRNA response to Cl- and the IL-1ß secretion, interrupting the autocrine IL-1ß loop. The results suggest that Cl- effects are mediated by SGK1, in which under Cl- modulation stimulates the secretion of mature IL-1ß, in turn, responsible for the upregulation of ROS, CASP1, NLRP3 and IL-1ß itself, through autocrine signalling.


Subject(s)
Caspase 1/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Immediate-Early Proteins/metabolism , Interleukin-1beta/metabolism , Intracellular Space/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Caspase Inhibitors/pharmacology , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dipeptides/pharmacology , Feedback, Physiological , Furans/pharmacology , Humans , Immediate-Early Proteins/genetics , Indenes/pharmacology , Interleukin-1beta/genetics , Mutation/genetics , Nigericin/pharmacology , Protein Serine-Threonine Kinases/genetics , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , Sulfonamides/pharmacology , para-Aminobenzoates/pharmacology
17.
Am J Physiol Endocrinol Metab ; 320(1): E78-E86, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33103455

ABSTRACT

Insulin secretion by ß-cells is largely controlled by circulating nutrients, hormones, and neurotransmitters. However, recent years have witnessed the multiplication of studies investigating whether local regulation also takes place within pancreatic islets, in which ß-cells cohabit with several other cell types. The cell composition and architectural organization of human islets differ from those of rodent islets and are particularly favorable to cellular interactions. An impressive number of hormonal (glucagon, glucagon-like peptide-1, somatostatin, etc.) and nonhormonal products (ATP, acetylcholine, γ-aminobutyric acid, dopamine, etc.) are released by islet cells and have been implicated in a local control of insulin secretion. This review analyzes reports directly testing paracrine and autocrine control of insulin secretion in isolated human islets. Many of these studies were designed on background information collected in rodent islets. However, the perspective of the review is not to highlight species similarities or specificities but to contrast established and speculative mechanisms in human islets. It will be shown that the current evidence is convincing only for a minority of candidates for a paracrine function whereas arguments supporting a physiological role of others do not stand up to scrutiny. Several pending questions await further investigation.


Subject(s)
Autocrine Communication/physiology , Insulin Secretion/physiology , Islets of Langerhans/metabolism , Paracrine Communication/physiology , Autocrine Communication/drug effects , Hormones/pharmacology , Humans , Insulin Secretion/drug effects , Islets of Langerhans/drug effects , Paracrine Communication/drug effects
18.
J Cell Sci ; 132(12)2019 06 25.
Article in English | MEDLINE | ID: mdl-31186279

ABSTRACT

In the fission yeast Schizosaccharomyces pombe, the mating reaction is controlled by two mating pheromones, M-factor and P-factor, secreted by M- and P-type cells, respectively. M-factor is a C-terminally farnesylated lipid peptide, whereas P-factor is a simple peptide. To examine whether this chemical asymmetry in the two pheromones is essential for conjugation, we constructed a mating system in which either pheromone can stimulate both M- and P-cells, and examined whether the resulting autocrine strains can mate. Autocrine M-cells responding to M-factor successfully mated with P-factor-lacking P-cells, indicating that P-factor is not essential for conjugation; by contrast, autocrine P-cells responding to P-factor were unable to mate with M-factor-lacking M-cells. The sterility of the autocrine P-cells was completely restored by expressing the M-factor receptor. These observations indicate that the different chemical characteristics of the two types of pheromone, a lipid and a simple peptide, are not essential; however, a lipid peptide might be required for successful mating. Our findings allow us to propose a model of the differential roles of M-factor and P-factor in conjugation of S. pombeThis article has an associated First Person interview with the first author of the paper.


Subject(s)
Cell Communication/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Pheromones/metabolism , Schizosaccharomyces/metabolism , Genes, Fungal , Peptides/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism
19.
Biochem Biophys Res Commun ; 558: 22-28, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33894674

ABSTRACT

Autocrine motility factor (AMF) stimulates the motility of cancer cells via an autocrine route and has been implicated in tumor progression and metastasis. Overexpression of AMF is correlated with the aggressive nature of breast cancer and is negatively associated with clinical outcomes. In contrast, AMF also has the ability to suppress cancer cells. In this study, AMFs from different cancer cells were demonstrated to have suppressive activity against MCF-7 and MDA-MB-231 breast cancer cells. In a growth and colony formation assay, AMF from AsPC-1 pancreatic cancer cells (ASPC-1:AMF) was determined to be more suppressive compared to other AMFs. It was also demonstrated that AsPC-1:AMF could arrest breast cancer cells at the G0/G1 cell cycle phase. Quantified by Western blot analysis, AsPC-1:AMF lowered levels of the AMF receptor (AMFR) and G-protein-coupled estrogen receptor (GPER), concomitantly regulating the activation of the AKT and ERK signaling pathways. JAK/STAT activation was also decreased. These results were found in estrogen receptor (ER)-positive MCF-7 cells but not in triple-negative MDA-MB-231 cells, suggesting that AsPC-1:AMF could work through multiple pathways led to apoptosis. More importantly, AsPC-1:AMF and methyl jasmonate (MJ) cooperatively and synergistically acted against breast cancer cells. Thus, AMF alone or along with MJ may be a promising breast cancer treatment option.


Subject(s)
Acetates/administration & dosage , Breast Neoplasms/drug therapy , Cyclopentanes/administration & dosage , Glucose-6-Phosphate Isomerase/administration & dosage , Oxylipins/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cloning, Molecular , Cytokines/administration & dosage , Cytokines/genetics , Down-Regulation/drug effects , Drug Synergism , Female , Glucose-6-Phosphate Isomerase/genetics , Humans , MCF-7 Cells , Molecular Targeted Therapy , Receptors, Autocrine Motility Factor/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Signal Transduction/drug effects , Tumor Stem Cell Assay
20.
New Phytol ; 229(1): 14-18, 2021 01.
Article in English | MEDLINE | ID: mdl-32687662

ABSTRACT

The pollen and pistil RALF peptides, along with multiple receptor-like kinases and leucine-rich repeat extensins, regulate pollen tube growth and the final burst within the ovule, where sperm cells are released for fertilisation to occur. This review introduces some new questions that arose about the regulation of this complex process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptides , Pollen , Pollen Tube
SELECTION OF CITATIONS
SEARCH DETAIL