Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Publication year range
1.
Neurobiol Dis ; 199: 106568, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38885848

ABSTRACT

Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.


Subject(s)
Autophagy , Lysosomes , Parkinson Disease , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Autophagy/physiology , Lysosomes/metabolism , Humans , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Animals
2.
Cell Mol Life Sci ; 80(6): 160, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210406

ABSTRACT

We previously reported that permanent ischemia induces marked dysfunction of the autophagy-lysosomal pathway (ALP) in rats, which is possibly mediated by the transcription factor EB (TFEB). However, it is still unclear whether signal transducer and activator of transcription 3 (STAT3) is responsible for the TFEB-mediated dysfunction of ALP in ischemic stroke. In the present study, we used AAV-mediated genetic knockdown and pharmacological blockade of p-STAT3 to investigate the role of p-STAT3 in regulating TFEB-mediated ALP dysfunction in rats subjected to permanent middle cerebral occlusion (pMCAO). The results showed that the level of p-STAT3 (Tyr705) in the rat cortex increased at 24 h after pMCAO and subsequently led to lysosomal membrane permeabilization (LMP) and ALP dysfunction. These effects can be alleviated by inhibitors of p-STAT3 (Tyr705) or by STAT3 knockdown. Additionally, STAT3 knockdown significantly increased the nuclear translocation of TFEB and the transcription of TFEB-targeted genes. Notably, TFEB knockdown markedly reversed STAT3 knockdown-mediated improvement in ALP function after pMCAO. This is the first study to show that the contribution of p-STAT3 (Tyr705) to ALP dysfunction may be partly associated with its inhibitory effect on TFEB transcriptional activity, which further leads to ischemic injury in rats.


Subject(s)
Autophagy , STAT3 Transcription Factor , Animals , Rats , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Ischemia/metabolism , Lysosomes/metabolism , Phosphorylation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
3.
Arch Biochem Biophys ; 744: 109698, 2023 08.
Article in English | MEDLINE | ID: mdl-37487948

ABSTRACT

Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Parkinson Disease , Animals , Rats , alpha-Synuclein/metabolism , Autophagy/physiology , Carcinogenesis , Cell Transformation, Neoplastic , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/metabolism , Up-Regulation , Humans
4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047290

ABSTRACT

Cataracts remain the first or second leading cause of blindness in all world regions. In the diabetic population, cataracts not only have a 3-5 times higher incidence than in the healthy population but also affect people at a younger age. In patients with type 1 diabetes, cataracts occur on average 20 years earlier than in the non-diabetic population. In addition, the risk of developing cataracts increases with the duration of diabetes and poor metabolic control. A better understanding of the mechanisms leading to the formation of diabetic cataracts enables more effective treatment and a holistic approach to the patient.


Subject(s)
Cataract , Diabetes Complications , Diabetes Mellitus, Type 1 , Humans , Cataract/metabolism , Diabetes Complications/complications , Diabetes Mellitus, Type 1/complications
5.
Mov Disord ; 37(7): 1346-1359, 2022 07.
Article in English | MEDLINE | ID: mdl-35579450

ABSTRACT

Neurodegenerative proteinopathies are defined as a class of neurodegenerative disorders, with either genetic or sporadic age-related onset, characterized by the pathological accumulation of aggregated protein deposits. These mainly include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) as well as frontotemporal lobar degeneration (FTLD). The deposition of abnormal protein aggregates in the brain of patients affected by these disorders is thought to play a causative role in neuronal loss and disease progression. On that account, the idea of improving the clearance of pathological protein aggregates has taken hold as a potential therapeutic strategy. Among the possible approaches to pursue for reducing disease protein accumulation, there is the stimulation of the main protein degradation machineries of eukaryotic cells: the ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Of note, several clinical trials testing the efficacy of either UPS- or ALP-active compounds are currently ongoing. Here, we discuss the main gaps and controversies emerging from experimental studies and clinical trials assessing the therapeutic efficacy of modulators of either the UPS or ALP in neurodegenerative proteinopathies, to gather whether they may constitute a real gateway from these disorders. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Humans , Protein Aggregates , Proteins/metabolism , Proteolysis , Ubiquitin/metabolism
6.
J Dairy Sci ; 105(8): 6997-7010, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35688731

ABSTRACT

Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood ß-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2-3.0 mM, n = 10) with similar days in milk (range: 3-9) and parity (range: 2-4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 µM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 µg/mL, 4 h) followed by ISO (10 µM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-α-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of ß-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of ß-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.


Subject(s)
Cattle Diseases , Ketosis , 3-Hydroxybutyric Acid , Acetylglucosaminidase/metabolism , Adipose Tissue/metabolism , Animals , Autophagy , Cathepsin D/metabolism , Cattle , Cattle Diseases/metabolism , Female , Glycerol/metabolism , Ketosis/veterinary , Lactation , Leupeptins/metabolism , Lipolysis , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Mammals/metabolism , Pregnancy , RNA, Messenger/metabolism , Sterol Esterase/metabolism , Triglycerides/metabolism
7.
Mol Cell Neurosci ; 99: 103390, 2019 09.
Article in English | MEDLINE | ID: mdl-31276749

ABSTRACT

Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aß clearance from the brain. Changes in IR-ß and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-ß levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-ß levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-ß and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aß burden without affecting cerebrovascular LRP-1 and IR-ß levels. In vitro studies using primary porcine (p)BCEC revealed that Aß peptides 1-40 or 1-42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-ß thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aß treatment accelerated the autophagy-lysosomal degradation of IR-ß and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-ß levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aß burden in AD may accelerate LRP-1 and IR-ß degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.


Subject(s)
Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Insulin/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Amyloid beta-Peptides/pharmacology , Animals , Autophagy , Blood-Brain Barrier/cytology , Cells, Cultured , Endothelial Cells/drug effects , Female , Humans , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Swine
8.
Mov Disord ; 31(6): 791-801, 2016 06.
Article in English | MEDLINE | ID: mdl-26923732

ABSTRACT

Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy-lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α-synuclein aggregation in PD. The degradation of α-synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α-synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read-out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α-synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD. © 2016 International Parkinson and Movement Disorder Society.


Subject(s)
Biomarkers/cerebrospinal fluid , Lysosomal Storage Diseases/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Proteins/metabolism , alpha-Synuclein/metabolism , Humans
9.
Prostaglandins Other Lipid Mediat ; 122: 37-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26723256

ABSTRACT

Autophagy is involved in the degradation of oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs). Sirtuin1 (SIRT1), a new anti-atherosclerotic factor, can induce autophagy in cardiac myocytes. In the present study, we observed the effect of SIRT1 on the accumulation of ox-LDL in HUVECs, and elucidated whether its effect is relative with the autophagy-lysosomal pathway. The results showed that treatment with either SIRT1 siRNA or SIRT1 inhibitor nicotinamide (NAM) increased Dil-labelled-ox-LDL (Dil-ox-LDL) accumulation in HUVECs, and the SIRT1 inducer resveratrol (RSV) decreased it. Knockdown of autophagy-related protein 5 or inhibit the lysosomal degradation by chloroquine (CQ) decreased the effect of RSV. In HUVECs with ox-LDL, expression of LC3II and LC3 puncta was decreased by treatment with SIRT1 siRNA or NAM, but increased by RSV treatment; sequestosome 1 p62 expression showed the opposite effects. Moreover, Dil-ox-LDL combined with SIRT1 siRNA or NAM showed a much smaller degree of overlap of Lamp1 or Cathepsin D with Dil-ox-LDL than in cells with Dil-ox-LDL alone, and RSV treatment resulted in a greater degree of overlap. These results suggest that SIRT1 can decrease the accumulation of ox-LDL in HUVECs, and this effect is related to the autophagy-lysosomal pathway.


Subject(s)
Autophagy , Human Umbilical Vein Endothelial Cells/metabolism , Lipoproteins, LDL/metabolism , Lysosomes , Sirtuin 1/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Blotting, Western , Cells, Cultured , Chloroquine/pharmacology , Enzyme Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Niacinamide/pharmacology , RNA Interference , Resveratrol , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Stilbenes/pharmacology , Vitamin B Complex/pharmacology
10.
Exp Neurol ; 380: 114904, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094768

ABSTRACT

Intact autophagy-lysosomal pathway (ALP) in neuronal survival is crucial. However, it remains unclear whether ALP is intact after subarachnoid hemorrhage (SAH). Ten-eleven translocation (TET) 3 primarily regulates genes related to autophagy in neurons in neurodegenerative diseases. This study aims to investigate the role of TET3 in the ALP following SAH. The results indicate that the ALP is impaired after SAH, with suppressed autophagic flux and an increase in autophagosomes. This is accompanied by a decrease in TET3 expression. Activation of TET3 by α-KG can improve ALP function and neural function to some extent. Silencing TET3 in neurons significantly inhibited the ALP function and increased apoptosis. Inhibition of miR-93-5p, which is elevated after SAH, promotes TET3 expression. This suggests that the downregulation of TET3 after SAH is, at least in part, due to elevated miR-93-5p. This study clarifies the key role of TET3 in the functional impairment of the ALP after SAH. The preliminary exploration revealed that miR-93-5p could lead to the downregulation of TET3, which could be a new target for neuroprotective therapy after SAH.


Subject(s)
Autophagy , Lysosomes , MicroRNAs , Subarachnoid Hemorrhage , Animals , Male , Mice , Autophagy/physiology , Dioxygenases , Lysosomes/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , Neurons/metabolism , Signal Transduction/physiology , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/genetics
11.
Brain Res ; 1823: 148683, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37992796

ABSTRACT

Recently, the underlying mechanisms of acupuncture on the effects of Alzheimer's disease (AD) treatment have not been fully elucidated. Defects in ALP (autophagy-lysosomal pathway) and TFEB (transcription factor EB) play critical roles in AD. Our previous studies have demonstrated that electroacupuncture (EA) can ameliorate both ß-amyloid (Aß) pathology and cognitive function in APP/PS1 mice. However, the effects of EA on the expression of ALP and TFEB and their potential mechanisms require further investigation. Twenty-eight male APP/PS1 mice were randomly divided into Tg and Tg + EA groups, and 14 C57BL/6 mice served as the wild-type (WT) group. After 1 week of adaptation to the living environment, mice in the Tg + EA group were restrained in mouse bags and received manual acupuncture at Baihui (GV20) acupoint and EA stimulation at bilateral Yongquan (KI1) acupoints, using the same restraint method for WT and Tg groups. The intervention was applied for 15 min each time, every other day, lasting for six weeks. After intervention, the spatial learning and memory of the mice was assessed using the Morris water maze test. Hippocampal Aß expression was detected by immunohistochemistry and ELISA. Transmission electron microscopy (TEM) was used to observe autophagic vacuoles and autolysosomes in the hippocampus. Immunofluorescence method was applied to examine the expression of TFEB in CA1 region of the hippocampus and the co-localization of CTSD or LAMP1 with Aß. Western blot analysis was performed to evaluate the changes of LC3, p62, CTSD, LAMP1, TFEB and n-TFEB (nuclear TFEB) in the hippocampus. The findings of behavioral assessment indicated that EA alleviated the cognitive impairment of APP/PS1 mice. Compared with the WT group, the Tg group showed significant cognitive decline and abnormalities in ALP and TFEB function (P < 0.01 or P < 0.05). However, these abnormal changes were alleviated in the Tg + EA group (P < 0.01 or P < 0.05). The Tg group also showed more senile plaques and ALP dysfunction features, compared with the WT group, and these changes were alleviated by EA. In conclusion, this study highlights that EA ameliorated Aß pathology-related cognitive impairments in the APP/PS1 model associated with ALP and TFEB dysfunction.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Electroacupuncture , Animals , Male , Mice , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Transgenic
12.
Phytomedicine ; 133: 155883, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059268

ABSTRACT

BACKGROUND: Vascular dementia (VaD) resulting from chronic cerebral hypoperfusion (CCH) induces cognitive impairment and white matter injury (WMI). We previously found that CCH induces dysfunction of the autophagy-lysosomal pathway (ALP) in white matter (WM) of rats. Enhancing oligodendrocyte autophagy to counteract ALP deficiency is beneficial for cognitive recovery. Pseudogenoside-F11 (PF11), a saponin extracted from Panax quinquefolium l., provides neuroprotective benefits in many animal models of cerebral ischemia and dementia. PURPOSE: To investigate how PF11 affects cognitive deterioration in rats with VaD induced by two vessel occlusion (2VO), and to determine if PF11 regulates ALP dysfunction in WM. METHODS: CCH-related VaD was induced in rats using the 2VO method. PF11 (6, 12, 24 mg/kg, intragastric administration) was given continuously for 4 weeks postoperatively. Behavioral tests related to cognitive function were performed on the 28th day following 2VO. Transmission electron microscopy, immunofluorescence, western blotting and Luxol fast blue staining were used to assess the WMI and the mechanism of action of PF11 in 2VO-induced VaD. RESULTS: PF11 (12 mg/kg) ameliorated 2VO-induced cognitive impairment. PF11 also alleviated WMI on the 28th day following 2VO, as characterized by reduction of neuronal axonal demyelination and axonal loss. Furthermore, PF11 prevented mature oligodendrocytes death by attenuating ALP deficiency in WM on the 14th day following 2VO, as manifested by enhancement of mechanistic target of rapamycin-mediated autophagy and lysosomal function, thereby reducing the aberrant accumulation of autophagy substrates and increasing the level of autophagosomes in WM. In addition, PF11 also prevented microglia and astrocytes from activating in WM on the 28th day following 2VO. CONCLUSION: PF11 significantly ameliorates cognitive impairment and WMI, and the mechanism is at least partly related to lessening ALP dysfunction in WM by enhancing autophagy and reducing lysosomal defects in oligodendrocytes.


Subject(s)
Autophagy , Cognitive Dysfunction , Dementia, Vascular , Ginsenosides , Lysosomes , Neuroprotective Agents , Rats, Sprague-Dawley , White Matter , Animals , Dementia, Vascular/drug therapy , Autophagy/drug effects , Male , Cognitive Dysfunction/drug therapy , White Matter/drug effects , Lysosomes/drug effects , Lysosomes/metabolism , Ginsenosides/pharmacology , Rats , Neuroprotective Agents/pharmacology , Disease Models, Animal , Panax/chemistry
13.
Article in English | MEDLINE | ID: mdl-38409665

ABSTRACT

Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.


Subject(s)
Autoimmune Diseases , Humans , Autophagy/physiology , Lysosomes/metabolism
14.
Exp Neurol ; 376: 114726, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403042

ABSTRACT

BACKGROUND: The complex pathophysiological changes following cerebral ischemia-reperfusion injury (CIRI) include the accumulation of defective proteins and damaged organelles, which cause massive neuron demise. To preserve cellular homeostasis, the autophagy-lysosomal pathway (ALP) is crucial for neurons to dispose of these substances. Many studies have shown that bone mesenchymal stem cell exosomes (BMSC-Exos) can reduce CIRI. However, the specific mechanisms have not been well elucidated, a fact that limits its widespread clinical use. This study aimed to clarify whether BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI via inhibiting mTOR and then activating TFEB nucleus translocation. METHODS: In this study, Flow cytometry, Nanoparticle tracking analysis (NTA), Transmission electron microscope (TEM), and Western blot were used to identify the BMSCs and BMSC-Exos used in this experiment as conforming to the requirements. In vivo experiments, SD rats were modeled with temporary middle cerebral artery occlusion (tMCAO), and BMSC-Exos was injected into the tail vein 2 h after modeling. Triphenyl tetrazolium chloride (TTC) staining, modified neurological severity scores (mNSS), corner turn test, and rotating rod test were used to detect neurological deficits in rats after BMSC-Exos intervention. Western blot and Immunofluorescence were used to detect ALP, transcription factor EB(TFEB) nucleus translocation, and mammalian target of rapamycin (mTOR) change at different time points after modeling and after BMSC-Exos intervention. In vitro experiments, pheochromocytoma cells (PC12) cells were subjected to oxygen-glucose deprivation and reperfusion (OGD/R) modeling to mimic CIRI, and were respectively intervened with BMSC-Exos, BMSC-Exos + MHY 1485 (the mTOR agonist), Rapamycin (the mTOR inhibitor). CCK8, Western blot, and Immunofluorescence were used to detect PC12 cell survival, TFEB nucleus translocation, and cathepsin B(CTSB) Immunofluorescence intensity. RESULTS: We found that ALP dysfunction occurred 72 h after tMCAO, and BMSC-Exos can attenuate ALP dysfunction by restoring lysosomal function. Next, we examined TFEB nucleus translocation and the expression of mTOR, a key regulator of translocation. We found that BMSC-Exos could inhibit mTOR and activate TFEB nucleus translocation. Additional in vitro tests revealed that BMSC-Exos could increase PC12 cell survival after OGD/R, activating TFEB nucleus translocation and enhancing the fluorescence intensity of CTSB, which in turn could be reversed by the mTOR agonist, MHY1485. This effect was similar to another mTOR inhibitor, Rapamycin. CONCLUSION: BMSC-Exos could attenuate ALP dysfunction by restoring lysosomal function after CIRI by inhibiting mTOR and then promoting TFEB nucleus translocation.


Subject(s)
Autophagy , Exosomes , Lysosomes , Reperfusion Injury , Animals , Male , Rats , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Brain Ischemia/metabolism , Exosomes/metabolism , Exosomes/transplantation , Lysosomes/metabolism , Lysosomes/pathology , Mesenchymal Stem Cells/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
15.
CNS Neurosci Ther ; 29(1): 37-59, 2023 01.
Article in English | MEDLINE | ID: mdl-36184826

ABSTRACT

The autophagy-lysosomal pathway (ALP) is involved in the degradation of protein aggregates and damaged organelles. Transcription factor EB (TFEB), a major regulator of ALP, has emerged as a leading factor in addressing neurodegenerative disease pathology, including Alzheimer's disease (AD), Parkinson's disease (PD), PolyQ diseases, and Amyotrophic lateral sclerosis (ALS). In this review, we delineate the regulation of TFEB expression and its functions in ALP. Dysfunctions of TFEB and its role in the pathogenesis of several neurodegenerative diseases are reviewed. We summarize the protective effects and molecular mechanisms of some TFEB-targeted agonists in neurodegenerative diseases. We also offer our perspective on analyzing the pros and cons of these agonists in the treatment of neurodegenerative diseases from the perspective of drug development. More studies on the regulatory mechanisms of TFEB in other biological processes will aid our understanding of the application of TFEB-targeted therapy in neurodegeneration.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Autophagy , Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Lysosomes
16.
Autophagy ; 19(8): 2240-2256, 2023 08.
Article in English | MEDLINE | ID: mdl-36779633

ABSTRACT

Acetaminophen (APAP) overdose is the predominant cause of drug-induced liver injury worldwide. The macroautophagy/autophagy-lysosomal pathway (ALP) is involved in the APAP hepatotoxicity. TFEB (transcription factor EB) promotes the expression of genes related to autophagy and lysosomal biogenesis, thus, pharmacological activation of TFEB-mediated ALP may be an effective therapeutic approach for treating APAP-induced liver injury. We aimed to reveal the effects of narirutin (NR), the main bioactive constituents isolated from citrus peels, on APAP hepatotoxicity and to explore its underlying mechanism. Administration of NR enhanced activities of antioxidant enzymes, improved mitochondrial dysfunction and alleviated liver injury in APAP-treated mice, whereas NR did not affect APAP metabolism and MAPK/JNK activation. NR enhanced TFEB transcriptional activity and activated ALP in an MTOR complex 1 (MTORC1)-independent but PPP3/calcineurin-dependent manner. Moreover, knockout of Tfeb or knockdown of PPP3CB/CNA2 (protein phosphatase 3, catalytic subunit, beta isoform) in the liver abolished the beneficial effects of NR on APAP overdose. Mechanistically, NR bound to PPP3CB via PRO31, LYS61 and PRO347 residues and enhanced PPP3/calcineurin activity, thereby eliciting dephosphorylation of TFEB and promoting ALP, which alleviated APAP-induced oxidative stress and liver injury. Together, NR protects against APAP-induced liver injury by activating a PPP3/calcineurin-TFEB-ALP axis, indicating NR may be a potential agent for treating APAP overdose.Abbreviations: ALP: autophagy-lysosomal pathway; APAP: acetaminophen; APAP-AD: APAP-protein adducts; APAP-Cys: acetaminophen-cysteine adducts; CAT: catalase; CETSA: cellular thermal shift assay; CQ: chloroquine; CYP2E1: cytochrome P450, family 2, subfamily e, polypeptide 1; CYCS/Cyt c: cytochrome c, somatic; DARTS: drug affinity responsive target stability assay; ENGASE/NAG: endo-beta-N-acetylglucosaminidase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPT/ALT: glutamic pyruvic transaminase, soluble; GSH: glutathione; GPX/GSH-Px: glutathione peroxidase; KD: dissociation constant; Leu: leupeptin; MCOLN1: mucolipin 1; MTORC1: MTOR complex 1; NAC: N-acetylcysteine; NAPQI: N-acetyl-p-benzoquinoneimine; NFAT: nuclear factor of activated T cells; NR: narirutin; OA: okadaic acid; RRAG: Ras related GTP binding; ROS: reactive oxygen species; PPP3CB/CNA2: protein phosphatase 3, catalytic subunit, beta isoform; PPP3R1/CNB1: protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I); SOD: superoxide dismutase; SPR: surface plasmon resonance analysis; TFEB: transcription factor EB.


Subject(s)
Calcineurin , Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Calcineurin/metabolism , Acetaminophen , Autophagy/genetics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Glutathione/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism
17.
Heliyon ; 9(2): e13691, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36852065

ABSTRACT

A new ent-abietane diterpenoid, named Euphejolkinolide A (1), was isolated from the whole plant of Euphorbia peplus L. Its structure, including absolute configurations, was determined by spectroscopic analyses and was corroborated by single-crystal X-ray diffraction analysis. This new compound was assessed for its activity to induce lysosome biogenesis through Lyso-Tracker Red staining, in which compound 1 could significantly induce lysosome biogenesis. In addition, quantitative real-time PCR (qRT-PCR) analysis demonstrated a direct correlation between the observed lysosome biogenesis and the transcriptional activation of the lysosomal genes after treatment with the compound 1. Moreover, compound 1 promoted autophagic flux by upregulating LC3-II and downregulating SQSTM1 in both human microglia cells and U251 cells, which is required for cellular homeostasis. Further results suggested 1 induced lysosome biogenesis and autophagy which was mediated by TFEB (transcription factor EB). The structure activity relationships (SAR) analysis suggested that the carbony1 at C-7 in 1 might be a key active group. Overall, the current data suggested that 1 could be a potential compound for lysosome disorder therapy by induction of autophagy.

18.
Front Aging Neurosci ; 15: 1175598, 2023.
Article in English | MEDLINE | ID: mdl-37304076

ABSTRACT

The autophagy-lysosomal pathway (ALP) is the major biological pathway responsible for clearing intracellular protein aggregates, therefore a promising target for treating diseases featuring the accumulation of aggregation-prone proteins, such as Huntington disease (HD). However, accumulating evidence indicated that targeting ALP to treat HD is pharmacologically challenging due to the complexity of autophagy and the autophagy defects in HD cells. Here in this mini-review, we summarized the current challenges in targeting ALP in HD and discussed a number of latest findings on aggrephagy and targeted protein degradation, which we believe will provide potential new targets and new strategies for treating HD via ALP.

19.
Exp Neurol ; 368: 114495, 2023 10.
Article in English | MEDLINE | ID: mdl-37495008

ABSTRACT

Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.


Subject(s)
Apoptosis , Spinal Cord Injuries , Rats , Animals , Humans , Rats, Sprague-Dawley , Spinal Cord Injuries/pathology , Autophagy , Endoplasmic Reticulum Stress/physiology , Spinal Cord/pathology
20.
Int Immunopharmacol ; 119: 110204, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37126988

ABSTRACT

Due to their simplicity and reliability, random-pattern skin flaps are commonly utilized in surgical reconstruction to repair cutaneous wounds. However, the post-operative necrosis frequently happens because of the ischemia and high-level of oxidative stress of random skin flaps, which can severely affect the healing outcomes. Earlier evidence has shown promising effect of Nuciferine (NF) on preventing hydrogen peroxide (H2O2)-induced fibroblast senescence and ischemic injury, however, whether it can function on promoting ischemic flap survival remains unknown. In this work, using network pharmacology analysis, it was possible to anticipate the prospective targets of NF in the context of ischemia. The results revealed that NF treatment minimized H2O2-induced cellular dysfunction of human umbilical vein endothelial cells (HUVECs), and also improved flap survival through strengthening angiogenesis and alleviating oxidative stress, inflammation and apoptosis in vivo. These outcomes should be attributed to TFEB-mediated enhancement of autophagy-lysosomal degradation via the AMPK-mTOR signaling pathway, whilst the restriction of autophagy stimulation with 3MA effectively diminished the above advantages of NF treatment. The increased nuclear translocation of TFEB not only restored lysosome function, but also promoted autophagosome-lysosome fusion, eventually restoring the inhibited autophagic flux and filling the high energy levels. The outcomes of our research can provide potent proof for the application of NF in the therapy of vascular insufficiency associated disorders, including random flaps.


Subject(s)
Aporphines , Autophagy , Surgical Flaps , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Human Umbilical Vein Endothelial Cells/metabolism , Hydrogen Peroxide/adverse effects , Lysosomes , Reproducibility of Results , Aporphines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL