Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Proc Natl Acad Sci U S A ; 119(30): e2108808119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35857869

ABSTRACT

Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable-a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used quantitative trait locus (QTL) mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of reoccurring gene conversion events and are members of a mildew sublineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sublineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangling complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations become an integral part of introgression breeding to ensure effective and durable resistance in wheat.


Subject(s)
Disease Resistance , Genetic Introgression , Plant Diseases , Secale , Triticum , Chromosome Mapping , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Secale/genetics , Secale/microbiology , Triticum/genetics , Triticum/microbiology
2.
Mol Plant Microbe Interact ; 37(6): 530-541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552146

ABSTRACT

Fusarium oxysporum f. sp. fragariae (Fof) race 1 is avirulent on cultivars with the dominant resistance gene FW1, while Fof race 2 is virulent on FW1-resistant cultivars. We hypothesized there was a gene-for-gene interaction between a gene at the FW1 locus and an avirulence gene (AvrFW1) in Fof race 1. To identify a candidate AvrFW1, we compared genomes of 24 Fof race 1 and three Fof race 2 isolates. We found one candidate gene that was present in race 1, was absent in race 2, was highly expressed in planta, and was homologous to a known effector, secreted in xylem 6 (SIX6). We knocked out SIX6 in two Fof race 1 isolates by homologous recombination. All SIX6 knockout transformants (ΔSIX6) gained virulence on FW1/fw1 cultivars, whereas ectopic transformants and the wildtype isolates remained avirulent. ΔSIX6 isolates were quantitatively less virulent on FW1/fw1 cultivars Fronteras and San Andreas than fw1/fw1 cultivars. Seedlings from an FW1/fw1 × fw1/fw1 population were genotyped for FW1 and tested for susceptibility to a SIX6 knockout isolate. Results suggested that additional minor-effect quantitative resistance genes could be present at the FW1 locus. This work demonstrates that SIX6 acts as an avirulence factor interacting with a resistance gene at the FW1 locus. The identification of AvrFW1 enables surveillance for Fof race 2 and provides insight into the mechanisms of FW1-mediated resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Disease Resistance , Fragaria , Fusarium , Plant Diseases , Fusarium/pathogenicity , Fusarium/genetics , Plant Diseases/microbiology , Virulence , Fragaria/microbiology , Disease Resistance/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Xylem/microbiology
3.
BMC Biol ; 21(1): 29, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36755285

ABSTRACT

BACKGROUND: Worldwide wheat production is under constant threat by fast-evolving fungal pathogens. In the last decades, wheat breeding for disease resistance heavily relied on the introgression of chromosomal segments from related species as genetic sources of new resistance. The Pm8 resistance gene against the powdery mildew disease has been introgressed from rye into wheat as part of a large 1BL.1RS chromosomal translocation encompassing multiple disease resistance genes and yield components. Due to its high agronomic value, this translocation has seen continuous global use since the 1960s on large growth areas, even after Pm8 resistance was overcome by the powdery mildew pathogen. The long-term use of Pm8 at a global scale provided the unique opportunity to study the consequences of such extensive resistance gene application on pathogen evolution. RESULTS: Using genome-wide association studies in a population of wheat mildew isolates, we identified the avirulence effector AvrPm8 specifically recognized by Pm8. Haplovariant mining in a global mildew population covering all major wheat growing areas of the world revealed 17 virulent haplotypes of the AvrPm8 gene that grouped into two functional categories. The first one comprised amino acid polymorphisms at a single position along the AvrPm8 protein, which we confirmed to be crucial for the recognition by Pm8. The second category consisted of numerous destructive mutations to the AvrPm8 open reading frame such as disruptions of the start codon, gene truncations, gene deletions, and interference with mRNA splicing. With the exception of a single, likely ancient, gain-of-virulence mutation found in mildew isolates around the world, all AvrPm8 virulence haplotypes were found in geographically restricted regions, indicating that they occurred recently as a consequence of the frequent Pm8 use. CONCLUSIONS: In this study, we show that the broad and prolonged use of the Pm8 gene in wheat production worldwide resulted in a multitude of gain-of-virulence mechanisms affecting the AvrPm8 gene in the wheat powdery mildew pathogen. Based on our findings, we conclude that both standing genetic variation as well as locally occurring new mutations contributed to the global breakdown of the Pm8 resistance gene introgression.


Subject(s)
Ascomycota , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Genome-Wide Association Study , Plant Breeding , Ascomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
4.
Mol Plant Microbe Interact ; 36(5): 309-311, 2023 May.
Article in English | MEDLINE | ID: mdl-36597013

ABSTRACT

To screen candidate fungal genes that may relate to avirulence genes corresponding to the host resistance genes, we characterized two field isolates of Magnaporthe oryzae that cause rice blast disease, especially in northeast China, and performed whole-genome resequencing of these two isolates. The genome assembly and annotation data was submitted to the National Center for Biotechnology Information database. Our study unveils the predicted fungal effectors of two dominant M. oryzae isolates in northeast China, providing a resource for Avr genes to clone. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/genetics , Oryza/microbiology , Genes, Fungal/genetics , Ascomycota/genetics
5.
Mol Plant Microbe Interact ; 36(11): 716-725, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37432132

ABSTRACT

Pyricularia oryzae, a blast fungus of gramineous plants, is composed of various host genus-specific pathotypes. The avirulence of an Avena isolate on wheat is conditioned by PWT3 and PWT4. We isolated the third avirulence gene from the Avena isolate and designated it as PWT7. PWT7 was effective as an avirulence gene only at the seedling stage or on leaves. PWT7 homologs were widely distributed in a subpopulation of the Eleusine pathotype and the Lolium pathotype but completely absent in the Triticum pathotype (the wheat blast fungus). The PWT7 homolog found in the Eleusine pathotype was one of the five genes involved in its avirulence on wheat. A comparative analysis of distribution of PWT7 and the other two genes previously identified in the Eleusine pathotype suggested that, in the course of parasitic specialization toward the wheat blast fungus, a common ancestor of the Eleusine, Lolium, Avena, and Triticum pathotypes first lost PWT6, secondly PWT7, and, finally, the function of PWT3. PWT7 or its homologs were located on core chromosomes in Setaria and Eleusine isolates but on supernumerary chromosomes in Lolium and Avena isolates. This is an example of interchromosomal translocations of effector genes between core and supernumerary chromosomes. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Magnaporthe , Triticum/microbiology , Ascomycota/genetics , Genes, Plant , Chromosomes , Plant Diseases/microbiology , Magnaporthe/genetics
6.
Phytopathology ; 113(7): 1222-1232, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36802873

ABSTRACT

The fungal phytopathogen Leptosphaeria maculans, which causes stem canker (blackleg) of rapeseed (Brassica napus), is mainly controlled worldwide by genetic resistance, which includes major resistance genes (Rlm). This model is one of those for which the highest number of avirulence genes (AvrLm) has been cloned. In many systems, including the L. maculans-B. napus interaction, intense use of resistance genes exerts strong selection pressure on the corresponding avirulent isolates, and the fungi may rapidly escape resistance through various molecular events which modify the avirulence genes. In the literature, the study of polymorphism at avirulence loci is often focused on single genes under selection pressure. In this study, we investigate allelic polymorphism at 11 avirulence loci in a French population of 89 L. maculans isolates collected on a trap cultivar in four geographic locations in the 2017-2018 cropping season. The corresponding Rlm genes have been (i) used for a long time, (ii) recently used, or (iii) unused in agricultural practice. The sequence data generated indicate an extreme diversity of situations. For example, genes submitted to an ancient selection may have either been deleted in populations (AvrLm1) or replaced by a single-nucleotide mutated virulent version (AvrLm2, AvrLm5-9). Genes that have never been under selection may either be nearly invariant (AvrLm6, AvrLm10A, AvrLm10B), exhibit rare deletions (AvrLm11, AvrLm14), or display a high diversity of alleles and isoforms (AvrLmS-Lep2). These data suggest that the evolutionary trajectory of avirulence/virulence alleles is gene-dependent and independent of selection pressure in L. maculans. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Brassica napus , Brassica , Ascomycota/genetics , Plant Diseases/microbiology , Polymorphism, Genetic , Brassica napus/microbiology
7.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36902415

ABSTRACT

Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.


Subject(s)
Magnaporthe , Oryza , Disease Resistance/genetics , Virulence/genetics , Magnaporthe/genetics , Oryza/genetics , Plant Diseases/genetics
8.
Plant Dis ; 106(6): 1700-1712, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34931892

ABSTRACT

Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.


Subject(s)
Disease Resistance , Plant Diseases , Ascomycota , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
9.
Phytopathology ; 111(11): 2023-2029, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34009007

ABSTRACT

Avirulence of Eleusine isolates of Pyricularia oryzae on common wheat is conditioned by at least five avirulence genes. One is PWT3 corresponding to resistance gene Rwt3 located on chromosome 1D. We identified a resistance gene corresponding to a second avirulence gene, PWT6, and named it Rmg9 (Rwt6). Rwt6 was closely linked to Rwt3. A survey of the population of Aegilops tauschii, the D genome donor to common wheat, revealed that some accessions from the southern coastal region of the Caspian Sea, the birthplace of common wheat, carried both genes. Rwt6 and Rwt3 carriers accounted for 65 and 80%, respectively, of accessions in a common wheat landrace collection. The most likely explanation of our results is that both resistance genes were simultaneously introduced into common wheat at the time of hybridization of Triticum turgidum and A. tauschii. However, a prominent difference was recognized in their geographical distributions in modern wheat; Rwt3 and Rwt6 co-occurred at high frequencies in regions to the east of the Caspian Sea, whereas Rwt6 occurred at a lower frequency than Rwt3 in regions to the west. This difference was considered to be associated with range of pathotypes to which these genes were effective. A. tauschii accessions carrying Rwt3 and Rwt6 also carried Rwt4, another resistance gene involved in the species specificity. We suggest that the gain of the D genome should have given an adaptive advantage to the genus Triticum by conferring disease resistance.


Subject(s)
Aegilops , Ascomycota , Ascomycota/genetics , Plant Diseases , Triticum/genetics
10.
Mol Ecol ; 29(24): 4925-4941, 2020 12.
Article in English | MEDLINE | ID: mdl-33031644

ABSTRACT

Secondary contact between crops and their wild relatives poses a threat to wild species, not only through gene flow between plants, but also through the dispersal of crop pathogens and genetic exchanges involving these pathogens, particularly those that have become more virulent by indirect selection on resistant crops, a phenomenon known as "pestification." Joint analyses of wild and domesticated hosts and their pathogens are essential to address this issue, but such analyses remain rare. We used population genetics approaches, demographic inference and pathogenicity tests on host-pathogen pairs of wild or domesticated apple trees from Central Asia and their main fungal pathogen, Venturia inaequalis, which itself has differentiated agricultural and wild-type populations. We confirmed the occurrence of gene flow from cultivated (Malus domestica) to wild (Malus sieversii) apple trees in Asian forests, potentially threatening the persistence of Asian wild apple trees. Pathogenicity tests demonstrated the pestification of V. inaequalis, the agricultural-type population being more virulent on both wild and domesticated trees. Single nucleotide polymorphism (SNP) markers and the demographic modelling of pathogen populations revealed hybridization following secondary contact between agricultural and wild-type fungal populations, and dispersal of the agricultural-type pathogen population in wild forests, increasing the threat of disease in the wild apple species. We detected an SNP potentially involved in pathogen pestification, generating an early stop codon in a gene encoding a small secreted protein in the agricultural-type fungal population. Our findings, based on joint analyses of paired host and pathogen data sets, highlight the threat posed by cultivating a crop near its centre of origin, in terms of pestified pathogen invasions in wild plant populations and introgression in the wild-type pathogen population.


Subject(s)
Malus , Fungal Genus Venturia , Gene Flow , Genetics, Population , Malus/genetics , Plant Diseases/genetics
11.
Mol Biol Rep ; 47(9): 7115-7123, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32897523

ABSTRACT

Blackleg, which is caused by the fungus Leptosphaeria maculans (L. maculans), is a major disease of canola in western Canada and worldwide. Long-term use of one source of resistance could cause the breakdown of its effectiveness. Therefore, appropriate use of R genes is very important, and knowledge about the distribution of avirulence genes is a prerequisite for effectively deploying resistance. Of the 14 avirulence genes identified in L. maculans, AvrLm5 and AvrLm9 were recognized as the two alleles of the same gene based on two single nucleotide polymorphisms, C85T and G164A/C. In this study, a specific marker was developed to identify AvrLm5 and AvrLm9 based on two single nucleotide polymorphisms, C85T and G164A/C, which are responsible for the function of AvrLm9. The specific marker can be used to discriminate the AvrLm9 from avrLm9 accurately in L. maculans isolates, which is consistent with inoculation tests in isolates without AvrLm4-7. This specific marker was used to screen 1229 isolates collected from fields in the years 2014 through 2016 in Manitoba. From 68 to 84% of the isolates were found to contain the AvrLm9 allele; while 4-7% of them were avirulent on the variety Goéland with Rlm9 loci. Furthermore, no isolates having both AvrLm9 and AvrLm7 were detected using a cotyledon test, while 67% to 84% of isolates contained both avirulence genes via PCR detection, implying suppression of AvrLm9 by AvrLm7. In addition, avirulence gene profiles of the other 10 avirulence alleles were examined with the 1229 isolates using cotyledon tests or PCR amplifications. Taken together, this research enables the fast identification of AvrLm5/9, provides the Avr genes' landscape of western Canada and elaborates the relationship between AvrLm9 and AvrLm7 using isolates from grower fields.


Subject(s)
Alleles , Fungal Proteins/genetics , Leptosphaeria , Virulence Factors/genetics , Brassica napus/microbiology , Leptosphaeria/genetics , Leptosphaeria/pathogenicity , Plant Diseases/genetics , Plant Diseases/microbiology
12.
Phytopathology ; 110(11): 1802-1807, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32960712

ABSTRACT

Wheat blast caused by the Triticum pathotype of Pyricularia oryzae was first reported in 1985 in Brazil and recently spread to Bangladesh. We tested whether Rmg8 and RmgGR119, recently identified resistance genes, were effective against Bangladeshi isolates of the pathogen. Common wheat accessions carrying Rmg8 alone (IL191) or both Rmg8 and RmgGR119 (GR119) were inoculated with Brazilian isolates (Br48, Br5, and Br116.5) and Bangladeshi isolates (T-108 and T-109). Br48, T-108, and T-109 carried the eI type of AVR-Rmg8 (the avirulence gene corresponding to Rmg8) while Br5 and Br116.5 carried its variants, eII and eII' types, respectively. Detached primary leaves of IL191 and GR119 were resistant to all isolates at 25°C. At a higher temperature (28°C), their resistance was still effective against the eI carriers but was reduced to a low level against the eII/eII' carriers. A survey of databases and sequence analyses revealed that all Bangladeshi isolates carried the eI type which induced a higher level of resistance than the eII/eII' types. The resistance of IL191 (Rmg8/-) to the eI carriers was maintained even at the heading stage and at the higher temperature. In addition, GR119 (Rmg8/RmgGR119) displayed higher levels of resistance than IL191 at this stage. These results suggest that Rmg8 combined with RmgGR119 will be useful in breeding for resistance against wheat blast in Bangladesh.


Subject(s)
Plant Diseases , Triticum , Alleles , Bangladesh , Brazil , Triticum/genetics
13.
Plant Dis ; 104(3): 717-723, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31935345

ABSTRACT

Magnaporthe oryzae is the causal agent for the devastating disease rice blast. The avirulence (AVR) genes in M. oryzae are required to initiate robust disease resistance mediated by the corresponding resistance (R) genes in rice. Therefore, monitoring pathogen AVR genes is important to predict the stability of R gene-mediated blast resistance. In the present study, we analyzed the DNA sequence dynamics of five AVR genes, namely, AVR-Pita1, AVR-Pik, AVR-Pizt, AVR-Pia, and AVR-Pii, in field isolates of M. oryzae in order to understand the effectiveness of the R genes, Pi-ta, Pi-k, Pi-zt, Pia, and Pii in the Southern U.S. rice growing region. Genomic DNA of 258 blast isolates collected from commercial fields of the Southern UNITED STATES during 1975-2009 were subjected to PCR amplification with AVR gene-specific PCR markers. PCR products were obtained from 232 isolates. The absence of PCR products in the remaining 26 isolates suggests that these isolates do not contain the tested AVR genes. Amplified PCR products were subsequently gel purified and sequenced. Based on the presence or absence of the five AVR genes, 232 field isolates were classified into 10 haplotype groups. The results revealed that 174 isolates of M. oryzae carried AVR-Pita1, 225 isolates carried AVR-Pizt, 44 isolates carried AVR-Pik, 3 isolates carried AVR-Pia, and one isolate carried AVR-Pii. AVR-Pita1 was highly variable, and 40 AVR-Pita1 haplotypes were identified in avirulent isolates. AVR-Pik had four nucleotide sequence site changes resulting in amino acid substitutions, whereas three other AVR genes, AVR-Pizt, AVR-Pia, and AVR-Pii, were relatively stable. Two AVR genes, AVR-Pik and AVR-Pizt, were found to exist in relatively larger proportions of the tested field isolates, which suggested that their corresponding R genes Pi-k and Pi-zt can be deployed in preventing blast disease in the Southern UNITED STATES in addition to Pi-ta. This study demonstrates that continued AVR gene monitoring in the pathogen population is critical for ensuring the effectiveness of deployed blast R genes in commercial rice fields.


Subject(s)
Magnaporthe , Oryza , Disease Resistance , Humans , Surveys and Questionnaires , Virulence
14.
Int J Mol Sci ; 21(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370102

ABSTRACT

Utilization of disease resistance components from wild potatoes is a promising and sustainable approach to control Phytophthora blight. Here, we combined avirulence (Avr) genes screen with RNA-seq analysis to discover the potential mechanism of resistance in Mexican wild potato species, Solanum pinnatisectum. Histological characterization displayed that hyphal expansion was significantly restricted in epidermal cells and mesophyll cell death was predominant, indicating that a typical defense response was initiated in S. pinnatisectum. Inoculation of S. pinnatisectum with diverse Phytophthora infestans isolates showed distinct resistance patterns, suggesting that S. pinnatisectum has complex genetic resistance to most of the prevalent races of P. infestans in northwestern China. Further analysis by Avr gene screens and comparative transcriptomic profiling revealed the presence and upregulation of multiple plant NBS-LRR genes corresponding to biotic stresses. Six NBS-LRR alleles of R1, R2, R3a, R3b, R4, and Rpi-smira2 were detected, and over 60% of the 112 detected NLR proteins were significantly induced in S. pinnatisectum. On the contrary, despite the expression of the Rpi-blb1, Rpi-vnt1, and Rpi-smira1 alleles, fewer NLR proteins were expressed in susceptible Solanum cardophyllum. Thus, the enriched NLR genes in S. pinnatisectum make it an ideal genetic resource for the discovery and deployment of resistance genes for potato breeding.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Phytophthora infestans , Solanum/genetics , Solanum/parasitology , Transcriptome , Disease Resistance , Genes, Plant , Plant Diseases/genetics , Plant Diseases/parasitology , Solanum/cytology
15.
Yi Chuan ; 42(3): 278-286, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32217513

ABSTRACT

In recent years, a great number of plant resistance (R) genes and pathogen avirulence (Avr) genes were identified. Exciting breakthroughs were also made on the structural and functional analysis of R proteins and Avr proteins, and the mechanistic interaction between them. Plants have evolved two layers of the immune system to cope with pathogens in the evolutionary processes, which are pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). In PTI responses, conserved PAMPs are recognized by plant plasma membrane-localized pattern recognition receptors (PRRs) and disease resistance is activated. Furthermore, the ETI immune signaling is activated by the recognition of pathogen Avr proteins by the host R proteins, which usually results in hypersensitive responses at the infection site. In this review, we summarize the progresses on PTI and ETI, and discuss the genetic mechanism of the interaction between plant R gene and pathogen Avr gene in detail. We also envision the new challenges and propose the new strategies for the future investigations on plant resistance molecular breeding.


Subject(s)
Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Plant Immunity , Plants/genetics , Plants/microbiology , Genes, Plant , Plant Diseases/genetics , Signal Transduction
16.
BMC Microbiol ; 18(1): 47, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855268

ABSTRACT

BACKGROUND: Pathogen avirulence (Avr) genes can evolve rapidly when challenged by the widespread deployment of host genes for resistance. They can be effectively isolated by positional cloning provided a robust and well-populated genetic map is available. RESULTS: An updated, SSR-based physical map of the rice blast pathogen Magnaporthe oryzae (Mo) has been constructed based on 116 of the 120 SSRs used to assemble the last map, along with 18 newly developed ones. A comparison between the two versions of the map has revealed an altered marker content and order within most of the Mo chromosomes. The avirulence gene AvrPi12 was mapped in a population of 219 progeny derived from a cross between the two Mo isolates CHL42 and CHL357. A bulked segregant analysis indicated that the gene was located on chromosome 6, a conclusion borne out by an analysis of the pattern of segregation shown by individual isolates. Six additional PCR-based markers were developed to improve the map resolution in the key region. AvrPi12 was finally located within the sub-telomeric region of chromosome 6, distal to the SSR locus LSM6-5. CONCLUSIONS: The improved SSR-based linkage map should be useful as a platform for gene mapping and isolation in Mo. It was used to establish the location of AvrPi12, thereby providing a starting point for its positional cloning.


Subject(s)
Fungal Proteins/genetics , Magnaporthe/genetics , Physical Chromosome Mapping/methods , Chromosome Segregation , Magnaporthe/pathogenicity , Microsatellite Repeats , Oryza/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology
17.
New Phytol ; 218(2): 681-695, 2018 04.
Article in English | MEDLINE | ID: mdl-29453934

ABSTRACT

Recognition of the AVRPM3A2/F2 avirulence protein from powdery mildew by the wheat PM3A/F immune receptor induces a hypersensitive response after co-expression in Nicotiana benthamiana. The molecular determinants of this interaction and how they shape natural AvrPm3a2/f2 allelic diversity are unknown. We sequenced the AvrPm3a2/f2 gene in a worldwide collection of 272 mildew isolates. Using the natural polymorphisms of AvrPm3a2/f2 as well as sequence information from related gene family members, we tested 85 single-residue-altered AVRPM3A2/F2 variants with PM3A, PM3F and PM3FL456P/Y458H (modified for improved signaling) in Nicotiana benthamiana for effects on recognition. An intact AvrPm3a2/f2 gene was found in all analyzed isolates and the protein variant recognized by PM3A/F occurred globally at high frequencies. Single-residue alterations in AVRPM3A2/F2 mostly disrupted, but occasionally enhanced, the recognition response by PM3A, PM3F and PM3FL456P/Y458H . Residues enhancing hypersensitive responses constituted a protein domain separate from both naturally occurring polymorphisms and positively selected residues of the gene family. These results demonstrate the utility of using gene family sequence diversity to screen residues for their role in recognition. This approach identified a putative interaction surface in AVRPM3A2/F2 not polymorphic in natural alleles. We conclude that molecular mechanisms besides recognition drive AvrPm3a2/f2 diversification.


Subject(s)
Ascomycota/pathogenicity , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Plant Diseases/microbiology , Receptors, Immunologic/metabolism , Triticum/microbiology , Amino Acid Motifs , Amino Acid Sequence , Ascomycota/genetics , Ascomycota/isolation & purification , Conserved Sequence , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Geography , Mutation/genetics , Phenotype , Plant Proteins/metabolism , Polymorphism, Genetic , Protein Domains , Structure-Activity Relationship , Virulence
18.
New Phytol ; 213(3): 1301-1314, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27935041

ABSTRACT

There is a large diversity of genetically defined resistance genes in bread wheat against the powdery mildew pathogen Blumeria graminis (B. g.) f. sp. tritici. Many confer race-specific resistance to this pathogen, but until now only the mildew avirulence gene AvrPm3a2/f2 that is recognized by Pm3a/f was known molecularly. We performed map-based cloning and genome-wide association studies to isolate a candidate for the mildew avirulence gene AvrPm2. We then used transient expression assays in Nicotiana benthamiana to demonstrate specific and strong recognition of AvrPm2 by Pm2. The virulent AvrPm2 allele arose from a conserved 12 kb deletion, while there is no protein sequence diversity in the gene pool of avirulent B. g. tritici isolates. We found one polymorphic AvrPm2 allele in B. g. triticale and one orthologue in B. g. secalis and both are recognized by Pm2. AvrPm2 belongs to a small gene family encoding structurally conserved RNase-like effectors, including Avra13 from B. g. hordei, the cognate Avr of the barley resistance gene Mla13. These results demonstrate the conservation of functional avirulence genes in two cereal powdery mildews specialized on different hosts, thus providing a possible explanation for successful introgression of resistance genes from rye or other grass relatives to wheat.


Subject(s)
Ascomycota/pathogenicity , Conserved Sequence , Fungal Proteins/metabolism , Plant Diseases/microbiology , Ribonucleases/metabolism , Secale/microbiology , Triticum/microbiology , Amino Acid Sequence , Ascomycota/genetics , Fungal Proteins/chemistry , Gene Expression Regulation, Plant , Genetic Loci , Genome-Wide Association Study , Models, Molecular , Phylogeny , Physical Chromosome Mapping , Plant Proteins/chemistry , Plant Proteins/metabolism , Nicotiana/microbiology , Virulence
19.
BMC Genomics ; 17: 667, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27550217

ABSTRACT

BACKGROUND: Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. RESULTS: To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. CONCLUSIONS: The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.


Subject(s)
Basidiomycota/genetics , Chromosome Mapping , Genome, Fungal , Genomics , Virulence/genetics , Amino Acid Sequence , Basidiomycota/pathogenicity , Computational Biology/methods , Gene Frequency , Genetic Loci , Genomics/methods , High-Throughput Nucleotide Sequencing , Loss of Heterozygosity , Mutation , Phenotype , Polymorphism, Single Nucleotide , Recombination, Genetic
20.
J Exp Bot ; 66(2): 513-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25504642

ABSTRACT

In this review, we argue for a research initiative on wheat's responses to biotic stress. One goal is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to a variety of agents of biotic stress are integrated in an important crop. We propose gene-for-gene interactions as the focus of the research initiative. On the parasite's side is an Avirulence (Avr) gene that encodes one of the many effector proteins the parasite applies to the plant to assist with colonization. On the plant's side is a Resistance (R) gene that mediates a surveillance system that detects the Avr protein directly or indirectly and triggers effector-triggered plant immunity. Even though arthropods are responsible for a significant proportion of plant biotic stress, they have not been integrated into important models of plant immunity that come from plant pathology. A roadblock has been the absence of molecular evidence for arthropod Avr effectors. Thirty years after this evidence was discovered in a plant pathogen, there is now evidence for arthropods with the cloning of the Hessian fly's vH13 Avr gene. After reviewing the two models of plant immunity, we discuss how arthropods could be incorporated. We end by showing features that make wheat an interesting system for plant immunity, including 479 resistance genes known from agriculture that target viruses, bacteria, fungi, nematodes, insects, and mites. It is not likely that humans will be subsisting on Arabidopsis in the year 2050. It is time to start understanding how agricultural plants integrate responses to biotic stress.


Subject(s)
Arabidopsis/physiology , Arabidopsis/parasitology , Crops, Agricultural/physiology , Crops, Agricultural/parasitology , Stress, Physiological , Triticum/physiology , Triticum/parasitology , Animals , Diptera/genetics , Diptera/physiology , Host-Parasite Interactions/physiology
SELECTION OF CITATIONS
SEARCH DETAIL