Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89.925
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 38: 597-620, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340575

ABSTRACT

Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes-the pia mater, arachnoid mater, and dura mater-surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and-according to recent evidence-also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.


Subject(s)
Central Nervous System/immunology , Central Nervous System/metabolism , Disease Susceptibility , Homeostasis , Immunity , Meninges/physiology , Animals , Humans , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Neuroimmunomodulation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959890

ABSTRACT

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

3.
Cell ; 186(12): 2574-2592.e20, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37192620

ABSTRACT

Serotonin influences many aspects of animal behavior. But how serotonin acts on its diverse receptors across the brain to modulate global activity and behavior is unknown. Here, we examine how serotonin release in C. elegans alters brain-wide activity to induce foraging behaviors, like slow locomotion and increased feeding. Comprehensive genetic analyses identify three core serotonin receptors (MOD-1, SER-4, and LGC-50) that induce slow locomotion upon serotonin release and others (SER-1, SER-5, and SER-7) that interact with them to modulate this behavior. SER-4 induces behavioral responses to sudden increases in serotonin release, whereas MOD-1 induces responses to persistent release. Whole-brain imaging reveals widespread serotonin-associated brain dynamics, spanning many behavioral networks. We map all sites of serotonin receptor expression in the connectome, which, together with synaptic connectivity, helps predict which neurons show serotonin-associated activity. These results reveal how serotonin acts at defined sites across a connectome to modulate brain-wide activity and behavior.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Serotonin/metabolism , Caenorhabditis elegans Proteins/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Behavior, Animal/physiology , Brain/metabolism
4.
Cell ; 186(19): 4134-4151.e31, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37607537

ABSTRACT

Changes in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral features. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representations of multiple behaviors. Moreover, although many neurons encode current motor actions, others integrate recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global map of how the cell types across an animal's brain encode its behavior.


Subject(s)
Caenorhabditis elegans , Connectome , Animals , Brain/cytology , Brain/metabolism , Models, Statistical , Neurons/metabolism
5.
Cell ; 186(12): 2556-2573.e22, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37236194

ABSTRACT

In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.


Subject(s)
Drosophila Proteins , Receptors, Odorant , Animals , Female , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Sexual Behavior, Animal/physiology , Receptors, Odorant/metabolism , Pheromones/metabolism , Smell/physiology , Drosophila/metabolism , Mammals/metabolism
6.
Cell ; 186(20): 4289-4309.e23, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37683635

ABSTRACT

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.


Subject(s)
Ants , Animals , Ants/physiology , Blood-Brain Barrier , Brain/metabolism , Drosophila , Social Behavior , Behavior, Animal
7.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37572660

ABSTRACT

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Subject(s)
Neural Pathways , Sexual Behavior, Animal , Animals , Male , Neurons/physiology , Reward , Sexual Behavior, Animal/physiology , Mice
8.
Cell ; 186(6): 1195-1211.e19, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36796363

ABSTRACT

Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions. We demonstrate that the activity of individual VMHvlPR neurons in the mouse hypothalamus represents aggression performed by self and others. We used a genetically encoded mirror-TRAP strategy to functionally interrogate these aggression-mirroring neurons. We find that their activity is essential for fighting and that forced activation of these cells triggers aggressive displays by mice, even toward their mirror image. Together, we have discovered a mirroring center in an evolutionarily ancient region that provides a subcortical cognitive substrate essential for a social behavior.


Subject(s)
Aggression , Hypothalamus , Mirror Neurons , Animals , Mice , Aggression/physiology , Hypothalamus/cytology , Social Behavior
9.
Cell ; 186(1): 162-177.e18, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608651

ABSTRACT

The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.


Subject(s)
Movement , Neurons , Mice , Animals , Movement/physiology , Neurons/physiology , Forelimb/physiology , Brain Stem
10.
Cell ; 186(1): 178-193.e15, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608653

ABSTRACT

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.


Subject(s)
Sexual Behavior, Animal , Ventromedial Hypothalamic Nucleus , Animals , Sexual Behavior, Animal/physiology , Ventromedial Hypothalamic Nucleus/physiology , Hypothalamus/physiology , Aggression/physiology , Social Behavior
11.
Cell ; 186(13): 2911-2928.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37269832

ABSTRACT

Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.


Subject(s)
Caenorhabditis elegans , Odorants , Animals , Caenorhabditis elegans/physiology , Smell , Sleep/physiology , Synapses/physiology
12.
Cell ; 185(16): 2975-2987.e10, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35853453

ABSTRACT

Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.


Subject(s)
Butterflies , Gene Transfer, Horizontal , Animals , Butterflies/genetics , Courtship , Evolution, Molecular , Male , Phylogeny
13.
Cell ; 185(22): 4099-4116.e13, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36261039

ABSTRACT

Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years. Chemical analysis revealed that highly attractive people produce significantly more carboxylic acids in their skin emanations. Mutant mosquitoes lacking the chemosensory co-receptors Ir8a, Ir25a, or Ir76b were severely impaired in attraction to human scent, but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in "mosquito-magnet" human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.


Subject(s)
Aedes , Anopheles , Insect Repellents , Animals , Humans , Carboxylic Acids/pharmacology , Odorants/analysis , Insect Repellents/pharmacology , Insect Repellents/analysis
14.
Cell ; 185(25): 4737-4755.e18, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493753

ABSTRACT

Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.


Subject(s)
Behavior, Animal , Dogs , Animals , Dogs/genetics , Dogs/physiology , Genetic Variation , Phenotype , Pedigree
15.
Cell ; 185(4): 654-671.e22, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35065713

ABSTRACT

Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.


Subject(s)
Estrous Cycle/genetics , Gene Expression Regulation , Sex Characteristics , Sexual Behavior, Animal/physiology , Aggression , Animals , Aromatase/metabolism , Autistic Disorder/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Profiling , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neurons/metabolism , Social Behavior
16.
Cell ; 185(5): 831-846.e14, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35176228

ABSTRACT

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Receptors, Interleukin-17/metabolism , Social Behavior , Animals , Fungi , Immunity, Mucosal , Intestinal Mucosa , Mice , Mucous Membrane
17.
Cell ; 184(2): 507-520.e16, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33382967

ABSTRACT

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We have identified three cell types that regulate aggression in Drosophila: one type is sexually shared, and the other two are sex specific. Shared common aggression-promoting (CAP) neurons mediate aggressive approach in both sexes, whereas functionally downstream dimorphic but homologous cell types, called male-specific aggression-promoting (MAP) neurons in males and fpC1 in females, control dimorphic attack. These symmetric circuits underlie the divergence of male and female aggressive behaviors, from their monomorphic appetitive/motivational to their dimorphic consummatory phases. The strength of the monomorphic → dimorphic functional connection is increased by social isolation in both sexes, suggesting that it may be a locus for isolation-dependent enhancement of aggression. Together, these findings reveal a circuit logic for the neural control of behaviors that include both sexually monomorphic and dimorphic actions, which may generalize to other organisms.


Subject(s)
Aggression/physiology , Drosophila melanogaster/physiology , Logic , Sex Characteristics , Sexual Behavior, Animal/physiology , Animals , Female , Male , Nerve Net/physiology , Neurons/physiology , Social Isolation , Tachykinins/metabolism
18.
Cell ; 184(23): 5807-5823.e14, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34739833

ABSTRACT

Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.


Subject(s)
Ants/genetics , Ecdysterone/pharmacology , Hierarchy, Social , Insect Proteins/metabolism , Neurons/metabolism , Sesquiterpenes/pharmacology , Social Behavior , Transcriptome/genetics , Animals , Ants/drug effects , Ants/physiology , Behavior, Animal/drug effects , Brain/metabolism , Gene Expression Regulation/drug effects , Genome , Neurons/drug effects , Phenotype , Repressor Proteins/metabolism , Signal Transduction/drug effects , Transcriptome/drug effects
19.
Cell ; 184(1): 257-271.e16, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417862

ABSTRACT

Hardwired circuits encoding innate responses have emerged as an essential feature of the mammalian brain. Sweet and bitter evoke opposing predetermined behaviors. Sweet drives appetitive responses and consumption of energy-rich food sources, whereas bitter prevents ingestion of toxic chemicals. Here we identified and characterized the neurons in the brainstem that transmit sweet and bitter signals from the tongue to the cortex. Next we examined how the brain modulates this hardwired circuit to control taste behaviors. We dissect the basis for bitter-evoked suppression of sweet taste and show that the taste cortex and amygdala exert strong positive and negative feedback onto incoming bitter and sweet signals in the brainstem. Finally we demonstrate that blocking the feedback markedly alters responses to ethologically relevant taste stimuli. These results illustrate how hardwired circuits can be finely regulated by top-down control and reveal the neural basis of an indispensable behavioral response for all animals.


Subject(s)
Amygdala/physiology , Brain/physiology , Mammals/physiology , Taste/physiology , Animals , Brain Stem/physiology , Calbindin 2/metabolism , Cerebral Cortex/physiology , Feedback, Physiological , Mice, Inbred C57BL , Mutation/genetics , Neural Inhibition/physiology , Neurons/physiology , Solitary Nucleus/physiology , Somatostatin/metabolism
20.
Cell ; 184(20): 5122-5137.e17, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34534446

ABSTRACT

Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.


Subject(s)
Brain/physiology , Caenorhabditis elegans/physiology , Sensation/physiology , Sexual Behavior, Animal/physiology , Animals , Brain Mapping , Copulation/physiology , Courtship , Databases as Topic , Feedback , Female , Male , Models, Biological , Movement , Neurons/physiology , Rest , Signal Processing, Computer-Assisted , Synapses/physiology , Vulva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL