Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Acta Pharmacol Sin ; 45(4): 728-737, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38086898

ABSTRACT

Stimulation of adult cardiomyocyte proliferation is a promising strategy for treating myocardial infarction (MI). Earlier studies have shown increased CCL2 levels in plasma and cardiac tissue both in MI patients and mouse models. In present study we investigated the role of CCL2 in cardiac regeneration and the underlying mechanisms. MI was induced in adult mice by permanent ligation of the left anterior descending artery, we showed that the serum and cardiac CCL2 levels were significantly increased in MI mice. Intramyocardial injection of recombinant CCL2 (rCCL2, 1 µg) immediately after the surgery significantly promoted cardiomyocyte proliferation, improved survival rate and cardiac function, and diminished scar sizes in post-MI mice. Alongside these beneficial effects, we observed an increased angiogenesis and decreased cardiomyocyte apoptosis in post-MI mice. Conversely, treatment with a selective CCL2 synthesis inhibitor Bindarit (30 µM) suppressed both CCL2 expression and cardiomyocyte proliferation in P1 neonatal rat ventricle myocytes (NRVMs). We demonstrated in NRVMs that the CCL2 stimulated cardiomyocyte proliferation through STAT3 signaling: treatment with rCCL2 (100 ng/mL) significantly increased the phosphorylation levels of STAT3, whereas a STAT3 phosphorylation inhibitor Stattic (30 µM) suppressed rCCL2-induced cardiomyocyte proliferation. In conclusion, this study suggests that CCL2 promotes cardiac regeneration via activation of STAT3 signaling, underscoring its potential as a therapeutic agent for managing MI and associated heart failure.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Mice , Animals , Rats , Chemokine CCL2/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac , Heart Failure/metabolism , Regeneration , Mice, Inbred C57BL , Apoptosis , STAT3 Transcription Factor/metabolism
2.
J Neurosci ; 42(9): 1820-1844, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34992132

ABSTRACT

Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the progressive hydrocephalus (prh) mutant which contains a point mutation in the Ccdc39 gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal prh mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the prh mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in prh mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the prh mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.SIGNIFICANCE STATEMENT In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse prh genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the prh mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.


Subject(s)
Hydrocephalus , Microglia , Animals , Animals, Newborn , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Female , Humans , Hydrocephalus/drug therapy , Indazoles , Mice , Pregnancy , Propionates
3.
J Clin Periodontol ; 50(12): 1644-1657, 2023 12.
Article in English | MEDLINE | ID: mdl-37697486

ABSTRACT

AIM: Our previous study revealed that the C-C motif chemokine receptor 2 (CCR2) is a promising target for periodontitis prevention and treatment. However, CCR2 is a receptor with multiple C-C motif chemokine ligands (CCLs), including CCL2, CCL7, CCL8, CCL13 and CCL16, and which of these ligands plays a key role in periodontitis remains unclear. The aim of the present study was to explore the key functional ligand of CCR2 in periodontitis and to evaluate the potential of the functional ligand as a therapeutic target for periodontitis. MATERIALS AND METHODS: The expression levels and clinical relevance of CCR2, CCL2, CCL7, CCL8, CCL13 and CCL16 were studied using human samples. The role of CCL2 in periodontitis was evaluated by using CCL2 knockout mice and overexpressing CCL2 in the periodontium. The effect of local administration of bindarit in periodontitis was evaluated by preventive and therapeutic medication in a mouse periodontitis model. Microcomputed tomography, haematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, bead-based immunoassays and flow cytometry were used for histomorphology, molecular biology and cytology analysis. RESULTS: Among different ligands of CCR2, only CCL2 was significantly up-regulated in periodontitis gingival tissues and was positively correlated with the severity of periodontitis. Mice lacking CCL2 showed milder inflammation and less bone resorption than wild-type mice, which was accompanied by a reduction in monocyte/macrophage recruitment. Adeno-associated virus-2 vectors overexpressing CCL2 in Ccl2-/- mice gingiva reversed the attenuation of periodontitis in a CCR2-dependent manner. In ligation-induced experimental periodontitis, preventive or therapeutic administration of bindarit, a CCL2 synthesis inhibitor, significantly inhibited the production of CCL2, decreased the osteoclast number and bone loss and reduced the expression levels of proinflammatory cytokines TNF-α, IL-6 and IL-1ß. CONCLUSIONS: CCL2 is a pivotal chemokine that binds to CCR2 during the progression of periodontitis, and targeting CCL2 may be a feasible option for controlling periodontitis.


Subject(s)
Chemokine CCL2 , Periodontitis , Animals , Humans , Mice , Chemokine CCL2/metabolism , Chemokines , Ligands , Mice, Inbred C57BL , Periodontitis/prevention & control , X-Ray Microtomography
4.
Molecules ; 28(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570736

ABSTRACT

Neuropathic pain is a debilitating condition that affects millions of people worldwide. Numerous studies indicate that this type of pain is a chronic condition with a complex mechanism that tends to worsen over time, leading to a significant deterioration in patients' quality of life and issues like depression, disability, and disturbed sleep. Presently used analgesics are not effective enough in neuropathy treatment and may cause many side effects due to the high doses needed. In recent years, many researchers have pointed to the important role of chemokines not only in the development and maintenance of neuropathy but also in the effectiveness of analgesic drugs. Currently, approximately 50 chemokines are known to act through 20 different seven-transmembrane G-protein-coupled receptors located on the surface of neuronal, glial, and immune cells. Data from recent years clearly indicate that more chemokines than initially thought (CCL1/2/3/5/7/8/9/11, CXCL3/9/10/12/13/14/17; XCL1, CX3CL1) have pronociceptive properties; therefore, blocking their action by using neutralizing antibodies, inhibiting their synthesis, or blocking their receptors brings neuropathic pain relief. Several of them (CCL1/2/3/7/9/XCL1) have been shown to be able to reduce opioid drug effectiveness in neuropathy, and neutralizing antibodies against them can restore morphine and/or buprenorphine analgesia. The latest research provides irrefutable evidence that chemokine receptors are promising targets for pharmacotherapy; chemokine receptor antagonists can relieve pain of different etiologies, and most of them are able to enhance opioid analgesia, for example, the blockade of CCR1 (J113863), CCR2 (RS504393), CCR3 (SB328437), CCR4 (C021), CCR5 (maraviroc/AZD5672/TAK-220), CXCR2 (NVPCXCR220/SB225002), CXCR3 (NBI-74330/AMG487), CXCR4 (AMD3100/AMD3465), and XCR1 (vMIP-II). Recent research has shown that multitarget antagonists of chemokine receptors, such as CCR2/5 (cenicriviroc), CXCR1/2 (reparixin), and CCR2/CCR5/CCR8 (RAP-103), are also very effective painkillers. A multidirectional strategy based on the modulation of neuronal-glial-immune interactions by changing the activity of the chemokine family can significantly improve the quality of life of patients suffering from neuropathic pain. However, members of the chemokine family are still underestimated pharmacological targets for pain treatment. In this article, we review the literature and provide new insights into the role of chemokines and their receptors in neuropathic pain.


Subject(s)
Analgesics, Opioid , Neuralgia , Humans , Analgesics, Opioid/pharmacology , Quality of Life , Neuralgia/drug therapy , Neuroglia , Analgesics/pharmacology , Analgesics/therapeutic use , Receptors, Chemokine
5.
Biol Pharm Bull ; 44(9): 1247-1253, 2021.
Article in English | MEDLINE | ID: mdl-34471053

ABSTRACT

The rate of glycolysis in cancer cells is higher than that of normal cells owing to high energy demands, which results in the production of excess lactate. Monocarboxylate transporters (MCTs), especially MCT1 and MCT4, play a critical role in maintaining an appropriate pH environment through lactate transport, and their high expression is associated with poor prognosis in breast cancer. Thus, we hypothesized that inhibition of MCTs is a promising therapeutic target for adjuvant breast cancer treatment. We investigated the effect of MCT inhibition in combination with 4-hydroxytamoxifen (4-OHT), an active metabolite of tamoxifen, using two estrogen receptor (ER)-positive breast cancer cell lines, MCF-7 and T47D. Lactate transport was investigated in cellular uptake studies. The cytotoxicity of 4-OHT was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In both cell lines evaluated, MCT1 and MCT4 were constitutively expressed at the mRNA and protein levels. [14C]-L-lactate uptake by both cells was significantly inhibited by bindarit, a selective MCT4 inhibitor, but weakly affected by 5-oxoploline (5-OP), a selective MCT1 inhibitor. The results of the MTT assay showed that combination with bindarit, but not 5-OP, decreased 4-OHT sensitivity. Bindarit significantly increased the levels of hypoxia-inducible factor-1α (HIF-1α) in MCF-7 cells. Moreover, HIF-1α knockdown significantly increased 4-OHT sensitivity, whereas induction of HIF-1α by hypoxia decreased 4-OHT sensitivity in MCF-7 cells. In conclusion, pharmacological MCT4 inhibition confers resistance to 4-OHT rather than sensitivity, by increasing HIF-1α protein levels. In addition, HIF-1α inhibition represents a potential therapeutic strategy for enhancing 4-OHT sensitivity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Monocarboxylic Acid Transporters/antagonists & inhibitors , Muscle Proteins/antagonists & inhibitors , Tamoxifen/analogs & derivatives , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indazoles/pharmacology , Indazoles/therapeutic use , MCF-7 Cells , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Propionates/pharmacology , Propionates/therapeutic use , Receptors, Estrogen/analysis , Receptors, Estrogen/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
6.
Cytokine ; 85: 92-100, 2016 09.
Article in English | MEDLINE | ID: mdl-27309675

ABSTRACT

Intraglomerular mesangial cells (MCs) maintain structural and functional integrity of renal glomerular microcirculation and homeostasis of mesangial matrix. Following different types of injury, MCs change their phenotype upregulating the expression of α-smooth muscle actin (α-SMA), changing contractile abilities and increasing the production of matrix proteins, chemokines and cytokines. CCL2 is a chemokine known to be involved in the pathogenesis of renal diseases. Its glomerular upregulation correlates with the extent of renal damage. Bindarit is an indazolic derivative endowed with anti-inflammatory activity when tested in experimental diseases. It selectively inhibits the synthesis of inflammatory C-C chemokines including CCL2, CCL7 and CCL8. This work aims to analyse bindarit effects on ET1-, AngII- and TGFß-induced mesangial cell dysfunction. Bindarit significantly reduced AngII-, ET1- and TGFß-induced α-SMA upregulation. In a collagen contraction assay, bindarit reduced AngII-, ET1- and TGFß-induced HRMC contraction. Within 3-6h stimulation, vinculin organization and phosphorylation was significantly impaired by bindarit in AngII-, ET1- and TGFß-stimulated cells without any effect on F-actin distribution. Conversely, p38 phosphorylation was not significantly inhibited by bindarit. Our data strengthen the importance of CCL2 on ET-1, AngII- and TGFß-induced mesangial cell dysfunction, adding new insights into the cellular mechanisms responsible of bindarit protective effects in human MC dysfunction.


Subject(s)
Chemokines/metabolism , Cytoskeleton/drug effects , Indazoles/pharmacology , Mesangial Cells/drug effects , Propionates/pharmacology , Protein Synthesis Inhibitors/pharmacology , Actins/metabolism , Angiotensin II/metabolism , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Cytoskeleton/metabolism , Endothelin-1/metabolism , Glomerular Mesangium/drug effects , Glomerular Mesangium/metabolism , Humans , Ligands , Mesangial Cells/metabolism , Transforming Growth Factor beta/metabolism , Up-Regulation/drug effects
7.
Cytokine ; 66(1): 60-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24548426

ABSTRACT

Breast cancer, the most deadly cancer in women, is characterized by elevated levels of inflammation within and surrounding the tumor, which can lead to accelerated growth, invasion and metastasis. Macrophages are central to the inflammatory milieu and are recruited to the tumor microenvironment by several factors including monocyte chemoattractant protein-1 (MCP-1). Using the anti-inflammatory molecule bindarit to target MCP-1, we investigated the role of this chemokine on macrophage related inflammation and mammary tumorigenesis in a transgenic mouse model of breast cancer. C3(1)/SV40Tag mice and wild type FVB/N were randomized to either control or 0.5% bindarit diet from 4 to 21weeks of age. Tumor number and volume were recorded over time and at sacrifice. Macrophage markers as well as inflammatory meditators were examined in the tumor tissue and mammary glands. Circulating MCP-1 and IL-6 were measured by ELISA. Bindarit treatment reduced tumor number (P<0.05), but did not affect tumor size, tumor weight or tumor latency in C3(1)/SV40Tag mice. Within the tumor, mRNA expression of bindarit's primary targets, MCP-1 and IL-12/p35, were significantly decreased by bindarit treatment (P<0.05), and this was consistent with trends for reduced expression of TNF-α, IL-6, F4/80, CD206, and IL-10. In mammary tissue, expression of MCP-1, TNF-α, IL-6, F4/80, IL-10 and IL-12/p35 was significantly elevated in C3(1)/SV40Tag mice compared to wild type FVB/N mice, but IL-6 was the only marker decreased by bindarit treatment (P<0.05). Plasma MCP-1 was highly correlated with tumor volume (P<0.05); however, it was not affected by bindarit at 21weeks of age. Similarly, circulating IL-6 was increased in C3(1)/SV40Tag mice but there was no effect of bindarit treatment. These results show that tumor multiplicity in the C3(1)/SV40Tag mouse model of breast cancer is reduced by bindarit, however these effects are independent of changes in plasma levels of MCP-1 and IL-6, but may be related to the attenuated expression of MCP-1 along with several inflammatory mediators and macrophage markers within the tumor.


Subject(s)
Antigens, Polyomavirus Transforming/metabolism , Carcinogenesis/pathology , Chemokine CCL2/antagonists & inhibitors , Indazoles/therapeutic use , Inflammation Mediators/metabolism , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/pathology , Propionates/therapeutic use , Animals , Biomarkers/blood , Body Weight/drug effects , Carcinogenesis/drug effects , Chemokine CCL2/blood , Chemokine CCL2/metabolism , Disease Models, Animal , Feeding Behavior/drug effects , Female , Gene Expression Regulation/drug effects , Indazoles/pharmacology , Interleukin-6/blood , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Mammary Neoplasms, Animal/blood , Mice , Mice, Transgenic , Organ Size/drug effects , Propionates/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spleen/drug effects , Spleen/pathology , Tumor Burden/drug effects , Tumor Necrosis Factor-alpha/metabolism
8.
Orthop Surg ; 14(6): 1203-1216, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35470579

ABSTRACT

OBJECTIVE: To investigate the changes in proinflammatory cytokines and chemokines, namely, C-C motif ligand (CCL) 2 and CCL7, in postmenopausal osteoporosis (PMOP) and to develop a new drug, bindarit (Bnd), for PMOP in an ovariectomized (OVX) mouse model. METHODS: Bone marrow macrophages (BMMs) from the femurs of five women with PMOP and five premenopausal women without osteoporosis were detected by RNA sequencing. BMMs from mice were differentiated into osteoclasts and treated with a synthetic inhibitor of CCL2 and CCL7, Bnd, or 17 beta estradiol (E2 ). Mouse BMMs were differentiated into osteoclasts with or without Bnd for 7 days and analyzed by RNA sequencing. Osteoblasts of mice were induced to undergo osteoblastogenesis and treated with Bnd. OVX mice were treated with E2 or Bnd after surgery. The protein and mRNA expression of CCL2 and CCL7 was detected using immunostaining and qPCR, respectively, in OVX and aged mice and in cells cultured in vitro. Osteoclast formation was detected using a tartrate-resistant acid phosphatase (TRAP) assay in vitro and in vivo. Alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) were detected using immunostaining to evaluate osteogenesis. Microcomputed tomography was conducted to analyze trabecular bone parameters, the structure model index, bone mineral density and other variables. Nuclear factor-κB (NF-κB) signaling pathway-related protein phosphorylation of IKKα/ß (p-IKKα/ß) and p-NFκB p65 was examined using western blotting. RESULTS: CCL2, CCL7 and their receptor of C-C chemokine receptor-2 (CCR2), and the NF-κB signaling pathway, were significantly increased in women with PMOP. CCL2 and CCL7 protein and mRNA expression was increased in OVX mice and aged female mice, but the increases were attenuated by E2 and Bnd. E2 and Bnd effectively inhibited osteoclastogenesis and the protein expression of CCL2 and CCL7 both in vitro and in vivo and reduced bone loss in OVX mice. Bnd did not affect the mineralization of osteoblasts directly in vitro but reduced bone turnover in vivo. p-IKKα/ß and p-NFκB p65 levels were increased in BMMs of mice after differentiation into osteoclasts but were significantly decreased by Bnd. CONCLUSION: The proinflammatory cytokines and chemokines CCL2, CCL7 and CCR2 were correlated with PMOP. Bnd attenuated the increases in CCL2 and CCL7 levels to affect osteoporosis in OVX mice via the NFκB signaling pathway. Thus, Bnd may be useful as a new therapeutic for the prevention of PMOP.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Osteoporosis, Postmenopausal , Osteoporosis , Animals , Cell Differentiation , Chemokine CCL2 , Chemokine CCL7 , Cytokines/metabolism , Female , Humans , I-kappa B Kinase/metabolism , I-kappa B Kinase/pharmacology , Indazoles , Mice , NF-kappa B/metabolism , Osteoclasts , Osteogenesis , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis, Postmenopausal/metabolism , Ovariectomy , Propionates , RNA, Messenger/metabolism , Signal Transduction , X-Ray Microtomography
9.
Cells ; 12(1)2022 12 26.
Article in English | MEDLINE | ID: mdl-36611891

ABSTRACT

Neuropathic pain treatment remains a challenging issue because the therapies currently used in the clinic are not sufficiently effective. Moreover, the mechanism of neuropathy is still not entirely understood; however, much evidence indicates that chemokines are important factors in the initial and late phases of neuropathic pain. To date, the roles of CCR1, CCR3 and their endogenous ligands have not been extensively studied; therefore, they have become the subject of our research. In the present comprehensive behavioral and biochemical study, we detected significant time-dependent and long-lasting increases in the mRNA levels of CCR1 and/or CCR3 ligands, such as CCL2/3/4/5/6/7/8/9, in the murine spinal cord after chronic constriction injury of the sciatic nerve, and these increases were accompanied by changes in the levels of microglial/macrophage, astrocyte and neutrophil cell markers. ELISA results suggested that endogenous ligands of CCR1 and CCR3 are involved in the development (CCL2/3/5/7/8/9) and persistence (CCL2/7/8) of neuropathic pain. Moreover, intrathecal injection of CCL2/3/5/7/8/9 confirmed their possible strong influence on mechanical and thermal hypersensitivity development. Importantly, inhibition of CCL2/7/8 production and CCR1 and CCR3 blockade by selective/dual antagonists effectively reduced neuropathic pain-like behavior. The obtained data suggest that CCL2/7/8/CCR1 and CCL7/8/CCR3 signaling are important in the modulation of neuropathic pain in mice and that these chemokines and their receptors may be interesting targets for future investigations.


Subject(s)
Neuralgia , Mice , Animals , Disease Models, Animal , Neuralgia/drug therapy , Neuralgia/etiology , Chemokines , Microglia , Macrophages , Ligands , Receptors, CCR3 , Receptors, CCR1
10.
Cell Mol Immunol ; 18(9): 2224-2235, 2021 09.
Article in English | MEDLINE | ID: mdl-32678310

ABSTRACT

Diabetes-associated periodontitis (DP) aggravates diabetic complications and increases mortality from diabetes. DP is caused by diabetes-enhanced host immune-inflammatory responses to bacterial insult. In this study, we found that persistently elevated CCL2 levels in combination with proinflammatory monocyte infiltration of periodontal tissues were closely related to DP. Moreover, inhibition of CCL2 by oral administration of bindarit reduced alveolar bone loss and increased periodontal epithelial thickness by suppressing periodontal inflammation. Furthermore, bindarit suppressed the infiltration of proinflammatory monocytes and altered the inflammatory properties of macrophages in the diabetic periodontium. This finding provides a basis for the development of an effective therapeutic approach for treating DP.


Subject(s)
Chemokine CCL2/antagonists & inhibitors , Diabetes Mellitus , Periodontitis , Humans , Indazoles/pharmacology , Macrophages , Monocytes , Periodontitis/complications , Periodontitis/drug therapy , Propionates/pharmacology
11.
Arch Immunol Ther Exp (Warsz) ; 66(3): 221-229, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29234825

ABSTRACT

C-C motif chemokine ligand 2 (CCL2) is a small cytokine that functions in inflammation and cancer development. Bindarit, a CCL2 inhibitor, is a small anti-inflammatory molecule proven safe by phase II trials in type 2 diabetic nephropathy patients. As cancer-related inflammation is a cause of pain, we investigated whether Bindarit suppresses cancer-related inflammation and pain. We established a bone-cancer mouse model by inoculating cancer cells. After applying Bindarit, we preformed pain sensitivity tests and checked cancer development by X-ray. Using flow cytometry and qRT-PCR assays, we assessed the effect of Bindarit on peripheral blood monocyte mobilization and M2 macrophage polarization. We also investigated the targets of Bindarit using western blotting and luciferase assay. Bindarit-treated mice performed better in pain sensitivity tests compare to control mice. X-ray imaging showed that Bindarit-treated mice had fewer cancer cell colonies and smaller overall tumor burden. Bindarit reduced the number of monocytes in peripheral blood and down-regulated the expression of M2 macrophage polarization makers. Bindarit also inhibited IKKß phosphorylation. Bindarit efficiently relieves cancer-related pain and suppresses cancer development. Bindarit inhibits monocyte mobilization in peripheral blood as well as M2 macrophage polarization. IKKß is identified as a target of Bindarit.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/metabolism , I-kappa B Kinase/metabolism , Indazoles/therapeutic use , Inflammation/metabolism , Myeloid Cells/drug effects , Neoplasms, Experimental/metabolism , Propionates/therapeutic use , Animals , Carcinogenesis , Cell Line, Tumor , Chemokine CCL2/antagonists & inhibitors , Disease Models, Animal , Humans , Male , Mice , Mice, Nude , Myeloid Cells/immunology , Signal Transduction/drug effects , Tumor Burden
12.
Exp Ther Med ; 14(3): 2613-2618, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28962202

ABSTRACT

The pathogenesis of acute aortic dissection (AAD) complicated acute lung injury (ALI) is not currently well defined. At present, no effective animal model has been established for AAD complicated ALI, which hinders research and development of an appropriate treatment regimen for the concurrent conditions. The aim of the present study was to evaluate the therapeutic effects of bindarit (Bnd), an indazolic derivative, on the production of monocyte chemoattractant protein (MCP)-1 in angiotensin II (AngII)-induced complicated ALI in rats. An AAD complicated ALI rat model was established using aminopropionitrile (BAPN) and AngII. The pathological features of AAD complicated ALI were assessed via biochemical and histopathological evaluations. AngII-stimulated human pulmonary microvascular endothelial cells (hPMVECs) were used to assess the effects of Bnd on MCP-1 expression. Western blot analysis was performed to analyze the expression of proteins that may be associated with the process. AAD complicated ALI was established following BAPN and AngII interference, and a massive accumulation of macrophages was observed in the lung tissues of the study rats. Bnd was able to significantly attenuate the incidence of AAD complicated ALI (P<0.05), and significantly inhibit the accumulation of macrophages (P<0.05). The overexpression of MCP-1 induced by AngII in hPMVECs was significantly inhibited by Bnd (P<0.05), which may be associated with downregulation of the classical nuclear factor-κB pathway. Bnd was able to attenuate the incidence of AAD complicated ALI, and inhibit the accumulation of macrophages in vivo. These findings provide a basis for future applications of Bnd as part of a therapeutic treatment schedule for aortic dissection complicated lung injury.

13.
Neuropharmacology ; 108: 373-81, 2016 09.
Article in English | MEDLINE | ID: mdl-27178133

ABSTRACT

The mammalian circadian system is mainly originated in a master oscillator located in the suprachiasmatic nuclei (SCN) in the hypothalamus. Previous reports from our and other groups have shown that the SCN are sensitive to systemic immune activation during the early night, through a mechanism that relies on the action of proinflammatory factors within this structure. Chemokine (C-C motif) ligand 2 (CCL2) is induced in the brain upon peripheral immune activation, and it has been shown to modulate neuronal physiology. In the present work we tested whether CCL2 might be involved in the response of the circadian clock to peripheral endotoxin administration. The CCL2 receptor, C-C chemokine receptor type 2 (CCR2), was detected in the SCN of mice, with higher levels of expression during the early night, when the clock is sensitive to immune activation. Ccl2 was induced in the SCN upon intraperitoneal lipopolysaccharide (LPS) administration. Furthermore, mice receiving an intracerebroventricular (Icv) administration of a CCL2 synthesis inhibitor (Bindarit), showed a reduction LPS-induced circadian phase changes and Icv delivery of CCL2 led to phase delays in the circadian clock. In addition, we tested the possibility that CCL2 might also be involved in the photic regulation of the clock. Icv administration of Bindarit did not modify the effects of light pulses on the circadian clock. In summary, we found that CCL2, acting at the SCN level is important for the circadian effects of immune activation.


Subject(s)
Chemokine CCL2/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Lipopolysaccharides/toxicity , Suprachiasmatic Nucleus/physiology , Animals , Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Suprachiasmatic Nucleus/drug effects
14.
J Alzheimers Dis ; 38(2): 281-93, 2014.
Article in English | MEDLINE | ID: mdl-23948942

ABSTRACT

One of the hallmarks of Alzheimer's disease (AD), the most common age-related neurodegenerative pathology, is the abnormal extracellular deposition of neurotoxic amyloid-ß (Aß) peptides that accumulate in senile plaques. Aß aggregates are toxic to neurons and are thought to contribute to neuronal loss. Evidence indicates that inflammation is involved in the pathophysiology of AD, and activation of glial cells by a variety of factors, including Aß, appears to be a central event. Among molecules produced during inflammation associated with neuronal death, CCL2, also known as monocyte chemotactic protein-1 (MCP-1), seems to be particularly important. Indeed, CCL2 levels are higher in the cerebrospinal fluid of patients with AD than in controls. In the present study, we demonstrated the protective effect of bindarit (which inhibits CCL2 synthesis) against both Aß25-35 and Aß1-42-induced toxicity in primary mixed neural cultures. Bindarit (30-500 µM) reversed cell death induced by Aß in a dose-dependent manner and reduced the transcription and release of CCL2 by astrocytes after Aß treatment, as revealed by qRT-PCR, ELISA, and immunofluorescence staining. Astroglial activation and CCL2 release was induced by ATP released by damaged neurons through interaction with P2X7 receptors present on astrocyte surface. CCL2, interacting with its cognate receptor CCR2, present on neuron surface, strongly contributes to the toxic activity of Aß. Bindarit was able to disconnect this neuro-glial interaction. Our results demonstrate the ability of bindarit to inhibit Aß-induced neuronal death and suggest the potential role of CCL2 inhibitors in the treatment of neuroinflammatory/neurodegenerative diseases.


Subject(s)
Chemokine CCL2/metabolism , Indazoles/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Propionates/pharmacology , Adenosine Triphosphate/pharmacology , Amyloid beta-Peptides/toxicity , Animals , Cell Survival/drug effects , Cerebral Cortex/cytology , Chemokine CCL2/genetics , Dose-Response Relationship, Drug , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation/drug effects , Neuroglia/drug effects , Neurons/ultrastructure , Peptide Fragments/toxicity , Pregnancy , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL