Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-28, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594966

ABSTRACT

Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.

2.
Colloids Surf B Biointerfaces ; 204: 111827, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33984612

ABSTRACT

This study aimed to use xanthan gum as a stabilizer to improve the stability of zein nanoparticles. Zein-xanthan gum composite nanoparticles were prepared via anti-solvent precipitation at pH 4.0. The particle size, zeta potential, and stability of the system were related to the amount of xanthan gum added. When 20 mg of xanthan gum was added, spherical nanoparticles with a small particle size (179 ± 2.1 nm) and sufficient negative zeta potential (-42 ± 1.6 mV) were obtained. The zeta potential and Fourier transform infrared spectroscopy results indicated that electrostatic attraction was the main driving force, followed by hydrogen bonding and hydrophobic interactions. Composite nanoparticles were coated by xanthan gum and remained stable over a wide pH range and at high temperatures and salt concentrations; they did not precipitate or aggregate after 30 days of storage. Moreover, the addition of xanthan gum considerably improved the encapsulation efficiency and loading capacity of nanoparticles containing high curcumin amounts, which facilitated slow and sustained release of curcumin in simulated intestinal fluid. Therefore, zein-xanthan gum nanoparticles can be used for the delivery of biologically active compounds in food and pharmaceutical preparations.


Subject(s)
Curcumin , Nanoparticles , Zein , Particle Size , Polysaccharides, Bacterial
3.
Clin Ophthalmol ; 7: 655-62, 2013.
Article in English | MEDLINE | ID: mdl-23576864

ABSTRACT

PURPOSE: To investigate the potential usage of biological delivery membranes containing mitomycin C (MMC) or 5-fluorouracil (5-FU) in the construction of glaucoma-filtering blebs, and to evaluate their safety and efficacy. METHODS: Chitosan was selected as the biological membrane carrier to prepare sustained-released membranes. Twelve micrograms of 5-FU or MMC was covalently conjugated onto the membranes by solvent volatilization. Rabbits underwent glaucoma filtration surgery and were randomly allocated into one of the four treatment regimens: glaucoma filtration operation with no implantation of chitosan membrane group (as control), drug-free chitosan membrane implantation group (blank/placebo group), membrane containing 5-FU treatment group (5-FU group), and membrane containing MMC treatment group (MMC group). Each group consisted of 12 rabbits. Intraocular pressure (IOP) was measured and evaluated over a 28-day period follow-up preoperatively, then after surgery on days 1, 3, 5, 7, 14, 21, and 28 by Tono-Pen. The aqueous humor was analyzed in each experimental and control groups at days 4, 6, 8, 10, 12, 14, 16, and 20 after operation. Bleb survival and anterior segment were examined with a slit lamp microscope and photographed simultaneously. Two rabbits from each group were killed on day 28 and eight eye samples obtained for histopathological study. Corneas and lenses were examined by transmission and scanning electron microscopy. RESULTS: Both 5-FU and MMC significantly prolonged bleb survival compared with control groups. The filtering bleb's survival period was significantly more prolonged in the MMC and 5-FU groups (maintained 14 days) than the other two groups (maintained 7 days). Significantly lower IOP was observed within the control, blank, and 5-FU groups after surgery on day 14 compared with that before operation, with F-values of 6.567, 11.426, and 13.467, respectively (P < 0.01). The most significant lower IOP was recorded in the MMC group on day 28 postoperation (F-value 26.866, P < 0.01). No obvious abnormalities were found in cornea or anterior lens capsule 28 days after surgery. CONCLUSION: The study provided evidence that 5-FU and MMC biological delivery membranes could significantly improve the outcome of filtering procedures, the survival of the bleb, and maintenance of lower IOP. MMC membrane is superior to 5-FU, with regard to the more effective reduction of IOP. The results indicated a safe and effective treatment strategy in glaucoma surgery.

4.
Mol Immunol ; 56(4): 599-611, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23911418

ABSTRACT

Nowadays many therapeutic agents such as suicide genes, anti-angiogenesis agents, cytokines, chemokines and other therapeutic genes were delivered to cancer cells. Various biological delivery systems have been applied for directing therapeutic gene to target cells. Some of these successful preclinical studies, steps forward to clinical trials and a few are examined in phase III clinical trials. In this review, the biological gene delivery systems were categorized into microorganism and cell based delivery systems. Viral, bacterial, yeast and parasite are among microorganism based delivery systems which are expanded in this review. In cell based approach, different strategies such as tumor cells, stem cells, dendritic cells and sertoli cells will be discussed. Different drawbacks are associated with each delivery system; therefore, many strategies have been improved and potentiated their direction toward specific target cells. Herein, further to the principle of each delivery system, the progresses of these approaches for development of newer generation are discussed.


Subject(s)
Cell Engineering/methods , Cell Transplantation/methods , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Cell Engineering/trends , Cell Transplantation/trends , Genetic Therapy/trends , Genetic Vectors/classification , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL