Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.329
Filter
Add more filters

Publication year range
1.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253182

ABSTRACT

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Subject(s)
Annexin A2 , Microglia , Reperfusion Injury , Animals , Mice , Annexin A2/metabolism , Microglia/metabolism , Multiomics , NF-kappa B/metabolism , Proteomics , Reperfusion Injury/metabolism
2.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38565288

ABSTRACT

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Signal Transduction , TRPM Cation Channels , Animals , Male , Mice , Brain Ischemia/metabolism , CA1 Region, Hippocampal/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , GABAergic Neurons/metabolism , Heart Arrest/complications , Heart Arrest/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Neural Inhibition/physiology , Receptors, GABA-A/metabolism , TRPM Cation Channels/metabolism
3.
FASEB J ; 38(2): e23387, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38193649

ABSTRACT

Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1ß, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1ß), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.


Subject(s)
Exosomes , MicroRNAs , Stroke , Animals , Mice , Humans , Endothelial Cells , Microglia , Toll-Like Receptor 4/genetics , NF-kappa B , Tumor Necrosis Factor-alpha , Brain , Hypoxia , Oxygen , Cytokines , MicroRNAs/genetics
4.
Arterioscler Thromb Vasc Biol ; 44(3): 635-652, 2024 03.
Article in English | MEDLINE | ID: mdl-38299355

ABSTRACT

BACKGROUND: After subarachnoid hemorrhage (SAH), neutrophils are deleterious and contribute to poor outcomes. Neutrophils can produce neutrophil extracellular traps (NETs) after ischemic stroke. Our hypothesis was that, after SAH, neutrophils contribute to delayed cerebral ischemia (DCI) and worse outcomes via cerebrovascular occlusion by NETs. METHODS: SAH was induced via endovascular perforation, and SAH mice were given either a neutrophil-depleting antibody, a PAD4 (peptidylarginine deiminase 4) inhibitor (to prevent NETosis), DNAse-I (to degrade NETs), or a vehicle control. Mice underwent daily neurological assessment until day 7 and then euthanized for quantification of intravascular brain NETs (iNETs). Subsets of mice were used to quantify neutrophil infiltration, NETosis potential, iNETs, cerebral perfusion, and infarction. In addition, NET markers were assessed in the blood of aneurysmal SAH patients. RESULTS: In mice, SAH led to brain neutrophil infiltration within 24 hours, induced a pro-NETosis phenotype selectively in skull neutrophils, and caused a significant increase in iNETs by day 1, which persisted until at least day 7. Neutrophil depletion significantly reduced iNETs, improving cerebral perfusion, leading to less neurological deficits and less incidence of DCI (16% versus 51.9%). Similarly, PAD4 inhibition reduced iNETs, improved neurological outcome, and reduced incidence of DCI (5% versus 30%), whereas degrading NETs marginally improved outcomes. Patients with aneurysmal SAH who developed DCI had elevated markers of NETs compared with non-DCI patients. CONCLUSIONS: After SAH, skull-derived neutrophils are primed for NETosis, and there are persistent brain iNETs, which correlated with delayed deficits. The findings from this study suggest that, after SAH, neutrophils and NETosis are therapeutic targets, which can prevent vascular occlusion by NETs in the brain, thereby lessening the risk of DCI. Finally, NET markers may be biomarkers, which can predict which patients with aneurysmal SAH are at risk for developing DCI.


Subject(s)
Brain Ischemia , Cerebrovascular Disorders , Extracellular Traps , Subarachnoid Hemorrhage , Humans , Mice , Animals , Subarachnoid Hemorrhage/complications , Neutrophils/metabolism , Brain Ischemia/etiology , Brain Ischemia/prevention & control , Cerebrovascular Disorders/complications
5.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456949

ABSTRACT

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Subject(s)
Brain Ischemia , Sumoylation , Humans , MAP Kinase Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinase Kinase 11 , Signal Transduction/physiology , Brain Ischemia/metabolism , Cognition , Molecular Chaperones/metabolism , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism
6.
J Proteome Res ; 23(1): 316-328, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38148664

ABSTRACT

Delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) is a major cause of complications and death. Here, we set out to identify high-performance predictive biomarkers of DCI and its underlying metabolic disruptions using metabolomics and lipidomics approaches. This single-center prospective observational study enrolled 61 consecutive patients with severe aSAH; among them, 22 experienced a DCI. Nine patients without aSAH were included as validation controls. Blood and cerebrospinal fluid (CSF) were sampled within the first 24 h after admission. We identified a panel of 20 metabolites that, together, showed high predictive performance for DCI. This panel of metabolites included lactate, cotinine, salicylate, 6 phosphatidylcholines, and 4 sphingomyelins. The interplay of the metabolome and the lipidome found between CSF and plasma in our patients underscores that aSAH and its associated DCI complications can extend beyond cerebral implications, with a peripheral dimension as well. As an illustration, early biological disruptions that might explain the subsequent DCI found systemic hypoxia driven mainly by higher blood lactate, arginine, and proline metabolism likely associated with vascular NO and disrupted ceramide/sphingolipid metabolism. We conclude that targeting early peripheral hypoxia preceding DCI could provide an interesting strategy for the prevention of vascular dysfunction.


Subject(s)
Brain Ischemia , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/complications , Brain Ischemia/etiology , Biomarkers , Lactic Acid , Hypoxia
7.
J Cell Mol Med ; 28(8): e18246, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520223

ABSTRACT

Here, it was aimed to investigate the effects of intracerebroventricular (ICV) Brain Derived Neurotrophic Factor (BDNF) infusion for 7 days following cerebral ischemia (CI) on autophagy in neurons in the penumbra. Focal CI was created by the occlusion of the right middle cerebral artery. A total of 60 rats were used and divided into 4 groups as Control, Sham CI, CI and CI + BDNF. During the 7-day reperfusion period, aCSF (vehicle) was infused to Sham CI and CI groups, and BDNF infusion was administered to the CI + BDNF group via an osmotic minipump. By the end of the 7th day of reperfusion, Beclin-1, LC3, p62 and cleaved caspase-3 protein levels in the penumbra area were evaluated using Western blot and immunofluorescence. BDNF treatment for 7 days reduced the infarct area after CI, induced the autophagic proteins Beclin-1, LC3 and p62 and suppressed the apoptotic protein cleaved caspase-3. Furthermore, rotarod and adhesive removal test times of BDNF treatment started to improve from the 4th day, and the neurological deficit score from the 5th day. ICV BDNF treatment following CI reduced the infarct area by inducing autophagic proteins Beclin-1, LC3 and p62 and inhibiting the apoptotic caspase-3 protein while its beneficial effects were apparent in neurological tests from the 4th day.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rats , Animals , Brain-Derived Neurotrophic Factor/metabolism , Rats, Sprague-Dawley , Caspase 3 , Beclin-1 , Brain Ischemia/metabolism , Apoptosis , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Autophagy , Infarction , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy
8.
J Biol Chem ; 299(5): 104693, 2023 05.
Article in English | MEDLINE | ID: mdl-37037305

ABSTRACT

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Memory , Animals , Mice , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Hippocampus/metabolism , Memory/drug effects , Memory/physiology , Neurons/metabolism , Phosphorylation/physiology , Swine , Peptides/pharmacology
9.
Glia ; 72(5): 833-856, 2024 May.
Article in English | MEDLINE | ID: mdl-37964690

ABSTRACT

Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.


Subject(s)
Brain Ischemia , Stroke , Humans , Microglia/metabolism , Brain Ischemia/pathology , Ischemia/metabolism , Stroke/metabolism , Neurons/pathology , Infarction, Middle Cerebral Artery/metabolism
10.
Glia ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785370

ABSTRACT

We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1ß (IL-1ß). Astrocytes treated with IL-1ß showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.

11.
Glia ; 72(2): 245-273, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37772368

ABSTRACT

Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.


Subject(s)
Brain Ischemia , Neural Stem Cells , Mice , Animals , Astrocytes/metabolism , Neuroglia/metabolism , Neural Stem Cells/metabolism , Oligodendroglia/metabolism , Brain/metabolism , Mice, Transgenic , Brain Ischemia/metabolism , Antigens/metabolism
12.
Pflugers Arch ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940824

ABSTRACT

Chronic cerebral ischemia (CCI) is a common neurological disorder, characterized by progressive cognitive impairment. Acupoint catgut embedding (ACE) represents a modern acupuncture form that has shown neuroprotective effects; nevertheless, its effects on CCI and the mechanisms remain largely unknown. Here, we aimed to explore the therapeutic action of ACE in CCI-induced cognitive impairment and its mechanisms. The cognitive function of CCI rats was determined using Morris water maze test, and histopathological changes in the brain were assessed through hematoxylin-eosin (HE) staining. To further explore the molecular mechanisms, the expression levels of oxidative stress markers and the Ang II/AT1R/NOX axis-associated molecules in the hippocampus were evaluated using enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry. Here, we observed that ACE treatment alleviated cognitive dysfunction and histopathological injury in CCI rats. Intriguingly, candesartan (an AT1R blocker) enhanced the beneficial effects of ACE on ameliorating cognitive impairment in CCI rats. Mechanistically, ACE treatment blocked the Ang II/AT1R/NOX pathway and subsequently suppressed oxidative stress, thus mitigating cognitive impairment in CCI. Our findings first reveal that ACE treatment could suppress cognitive impairment in CCI, which might be partly due to the suppression of Ang II/AT1R/NOX axis.

13.
Neurobiol Dis ; 199: 106586, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950712

ABSTRACT

OBJECTIVE: The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema. METHODS: A mice model of middle cerebral artery occlusion and reperfusion was used. A fluorescence tracer was injected into the cortex and evaluated glymphatic clearance. To investigate the role of DP71 in maintaining AQP4 polarization, an adeno-associated virus with the astrocyte promoter was used to overexpress Dp71. The expression and distribution of DP71 and AQP4 were analyzed using immunoblotting, immunofluorescence, and co-immunoprecipitation techniques. The behavior ability of mice was evaluated by open field test. Open-access transcriptome sequencing data were used to analyze the functional changes of astrocytes after cerebral ischemia. MG132 was used to inhibit the ubiquitin-proteasome system. The ubiquitination of DP71 was detected by immunoblotting and co-immunoprecipitation. RESULTS: During the vasogenic edema stage following cerebral ischemia, a decline in the efflux of interstitial fluid tracer was observed. DP71 and AQP4 were co-localized and interacted with each other in the perivascular astrocyte endfeet. After cerebral ischemia, there was a notable reduction in DP71 protein expression, accompanied by AQP4 depolarization and proliferation of reactive astrocytes. Increased DP71 expression restored glymphatic drainage and reduced brain edema. AQP4 depolarization, reactive astrocyte proliferation, and the behavior of mice were improved. After cerebral ischemia, DP71 was degraded by ubiquitination, and MG132 inhibited the decrease of DP71 protein level. CONCLUSION: AQP4 depolarization after cerebral ischemia leads to glymphatic clearance disorder and aggravates cerebral edema. DP71 plays a pivotal role in regulating AQP4 polarization and consequently influences glymphatic function. Changes in DP71 expression are associated with the ubiquitin-proteasome system. This study offers a novel perspective on the pathogenesis of brain edema following cerebral ischemia.

14.
Curr Issues Mol Biol ; 46(4): 3484-3501, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38666949

ABSTRACT

Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes.

15.
Mol Med ; 30(1): 77, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840035

ABSTRACT

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Subject(s)
Apoptosis , Flavonoids , Ischemic Stroke , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Oxidative Stress , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Rats , Flavonoids/pharmacology , Flavonoids/therapeutic use , Mitochondrial Permeability Transition Pore/metabolism , Apoptosis/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/etiology , PC12 Cells , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Male , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Disease Models, Animal , Hydrogen Peroxide/metabolism , Cell Survival/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley
16.
Mol Med ; 30(1): 59, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745316

ABSTRACT

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Subject(s)
Autophagy , Disease Models, Animal , Microglia , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Microglia/drug effects , Microglia/metabolism , Mice , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Autophagy/drug effects , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Cell Polarity/drug effects
17.
Mol Med ; 30(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773376

ABSTRACT

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Subject(s)
Autophagy , Beclin-1 , Brain Ischemia , Iridoid Glucosides , Neurons , Animals , Autophagy/drug effects , Beclin-1/metabolism , Beclin-1/genetics , Rats , Neurons/metabolism , Neurons/drug effects , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Male , Iridoid Glucosides/pharmacology , Iridoid Glucosides/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Apoptosis/drug effects , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Adenosine/analogs & derivatives
18.
Biochem Biophys Res Commun ; 704: 149712, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38408414

ABSTRACT

Astrocytes transfer extracellular functional mitochondria into neurons to rescue injured neurons after a stroke. However, there are no reports on drugs that interfere with intercellular mitochondrial transfer. Chrysophanol (CHR) was an effective drug for the treatment of cerebral ischemia-reperfusion injury (CIRI) and was selected as the test drug. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model and the middle cerebral artery occlusion animal model were established to investigate the effect of CHR on CIRI. The result showed that astrocytes could act as mitochondrial donors to ameliorate neuronal injury. Additionally, the neuroprotective effect of astrocytes was enhanced by CHR, the CHR improved the neuronal mitochondrial function, decreased the neurological deficit score and infarction volume, recovered cell morphology in ischemic penumbra. The mitochondrial fluorescence probe labeling technique has shown that the protective effect of CHR is associated with accelerated astrocytic mitochondrial transfer to neurons. The intercellular mitochondrial transfer may be an important way to ameliorate ischemic brain injury and be used as a key target for drug treatment.


Subject(s)
Anthraquinones , Brain Ischemia , Reperfusion Injury , Rats , Animals , Brain Ischemia/metabolism , Astrocytes/metabolism , Reperfusion Injury/metabolism , Neurons/metabolism , Mitochondria
19.
J Neurosci Res ; 102(1)2024 01.
Article in English | MEDLINE | ID: mdl-38284844

ABSTRACT

Chronic cerebral ischemia (CCI) can lead to vascular cognitive impairment, but therapeutic options are limited. Cognitive-exercise dual-task (CEDT), as a potential rehabilitation intervention, can attenuate cognitive impairment. However, the related mechanisms remain unclear. In this study, 2-vessel occlusion (2-VO) in male SD rats was performed to establish the CCI model. The rats were treated with cognitive, exercise, or CEDT intervention for 21 days. The Morris water maze (MWM) test was used to assess cognitive ability. TUNEL staining was used to detect the neuronal apoptosis. Immunofluorescence, RT-qPCR and Western blot were used to detect the protein or mRNA levels of EphrinA3, EphA4, p-PI3K, and p-Akt. The results showed that CEDT could improve performance in the MWM test, reverse the increased expression of EphrinA3 and EphA4, and the reduced expression of p-PI3K and p-Akt in CCI rats, which was superior to exercise and cognitive interventions. In vitro, oxygenglucose deprivation (OGD) challenge of astrocytes and neuronal cells were used to mimic cerebral ischemia. Immunofluorescence assay revealed that the levels of MAP-2, p-PI3K, and p-Akt were reduced in EphrinA3 overexpressed cells after OGD stimulation. Finally, the knock-down of EphrinA3 by shRNA significantly promoted the recovery of cognitive function and activation of PI3K/Akt after CEDT treatment in CCI rats. In conclusion, our study suggests that CEDT promotes cognitive function recovery after CCI by regulating the signaling axis of EphrinA3/EphA4/PI3K/Akt.


Subject(s)
Brain Ischemia , Phosphatidylinositol 3-Kinases , Male , Animals , Rats , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt , Signal Transduction , Cognition
20.
BMC Neurosci ; 25(1): 25, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773385

ABSTRACT

INTRODUCTION: Incontinentia pigmenti (IP) is a rare neuroectodermal dysplasia caused by a defect in the IKBKG gene. The pathogenesis of central nervous system injury is believed to be related to microvascular ischemia. Currently, few treatment strategies are available for the inflammatory phase. MATERIALS AND METHODS: This retrospective descriptive analysis included the clinical data of 41 children with IP collected from 2007 to 2021 in Xi'an, China, comprising clinical characteristics, imaging findings, blood cell analysis, skin histopathology, and genetic data. RESULTS: Fourteen children (34%) aged 4 days to 5 months exhibited clinical signs and symptoms, including convulsions, delayed psychomotor development following neurological damage, and revealed significant MRI abnormalities, including ischemia, hypoxia, cerebral hypoperfusion, hemorrhage, encephalomalacia, and cerebral atrophy. Eight of the 24 patients (33%) presented with retinal vascular tortuosity and telangiectasis, accompanied by neovascularization and hemorrhage. Thirty-eight children (93%) had elevated eosinophils (mean: 3.63 ± 4.46 × 109), and 28 children (68%) had significantly elevated platelets (mean: 420.16 ± 179.43 × 109). Histopathology of skin revealed microvascular extravasation and vasodilation with perivascular and intravascular eosinophilic infiltration. CONCLUSION: Brain injury in IP occurs during infancy until 5 months of age, which is also the acute dermatitis phase accompanied by eosinophilia and an increased platelet count. This study provides evidence of microvascular damage to the skin and fundus during the inflammatory phase. The mechanism of microvascular damage may be similar to that in the brain.


Subject(s)
Incontinentia Pigmenti , Humans , Incontinentia Pigmenti/pathology , Incontinentia Pigmenti/genetics , Infant , Female , Retrospective Studies , Male , China , Infant, Newborn , Magnetic Resonance Imaging , Brain/pathology , Brain/diagnostic imaging , Child, Preschool , East Asian People
SELECTION OF CITATIONS
SEARCH DETAIL