Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
Add more filters

Publication year range
1.
FASEB J ; 38(17): e70029, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39215630

ABSTRACT

Immunotherapies have significantly improved the prognosis of patients with advanced hepatocellular carcinoma (HCC), although more than 70% of patients still do not respond to this first-line treatment. Many new combination strategies are currently being explored, which drastically increases the need for preclinical models that would allow large-scale testing of new immunotherapies and their combinations. We developed several in ovo (in the egg) human liver cancer models, based on human tumor xenografts of different liver cancer cell lines on the chicken embryo's chorioallantoic membrane. We characterized the angiogenesis, as well as the collagen accumulation and tumor immune microenvironment, and tested atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF) treatment. Our results show the involvement of chicken immune cells in tumor growth, reproducing a classical non-inflamed "cold" as well as inflamed "hot" tumor status, depending on the in ovo liver cancer model. The treatment by atezolizumab and bevacizumab was highly efficient in the "hot" tumor model PLC/PRF/5 in ovo with the reduction of tumor size by 76% (p ≤ .0001) compared with the control, whereas the efficacy was limited in the "cold" Hep3B in ovo tumor. The contribution of the anti-PD-L1 blockade to the anti-tumoral effect in the PLC/PRF/5 in ovo model was demonstrated by the efficacy of atezolizumab monotherapy (p = .0080, compared with the control). To conclude, our study provides a detailed characterization and rational arguments that could help to partially replace conventional laboratory animals with a more ethical model, suited to the current needs of preclinical research of new immunotherapies for liver cancer.


Subject(s)
Antibodies, Monoclonal, Humanized , Bevacizumab , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Chick Embryo , Bevacizumab/therapeutic use , Bevacizumab/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Tumor Microenvironment/drug effects , Immunotherapy/methods , Chorioallantoic Membrane/drug effects , Disease Models, Animal
2.
Genomics ; 116(1): 110754, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061480

ABSTRACT

Dimorphism between male and female embryos has been demonstrated in many animal species, including chicken species. Likewise, extraembryonic membranes such as the chorioallantoic membrane (CAM) are likely to exhibit a sex-specific profile. Analysis of the previously published RNA-seq data of the chicken CAM sampled at two incubation times, revealed 783 differentially expressed genes between the CAM of male and female embryos. The expression of some of these genes is sex-dependant only at one or other stage of development, while 415 genes are sex-dependant at both developmental stages. These genes include well-known sex-determining and sex-differentiation genes (DMRT1, HEGM, etc.), and are mainly located on sex chromosomes. This study provides evidence that gene expression of extra-embryonic membranes is differentially regulated between male and female embryos. As such, a better characterisation of associated mechanisms should facilitate the identification of new sex-specific biomarkers.


Subject(s)
Chickens , Transcriptome , Animals , Male , Female , Chickens/genetics , Chorioallantoic Membrane/metabolism , Sex Differentiation/genetics , Gene Expression Regulation, Developmental
3.
Genesis ; 62(2): e23592, 2024 04.
Article in English | MEDLINE | ID: mdl-38587195

ABSTRACT

Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.


Subject(s)
Chickens , Mesenchymal Stem Cells , Animals , Chick Embryo , Chorioallantoic Membrane , Cell Differentiation/physiology , Cells, Cultured
4.
Microvasc Res ; 151: 104596, 2024 01.
Article in English | MEDLINE | ID: mdl-37625620

ABSTRACT

In the later stages of angiogenesis, the vascular sprout transitions into a functional vessel by fusing with a target vessel. Although this process appears to routinely occur in embryonic tissue, the biologic rules for sprout fusion and lumenization in adult regenerating tissue are unknown. To investigate this process, we grafted portions of the regenerating post-pneumonectomy lung onto the chick chorioallantoic membrane (CAM). Grafts from all 4 lobes of the post-pneumonectomy right lung demonstrated peri-graft angiogenesis as reflected by fluorescent plasma markers; however, fluorescent microsphere perfusion primarily occurred in the lobe of the lung that is the dominant site of post-pneumonectomy angiogenesis-namely, the cardiac lobe. Vascularization of the cardiac lobe grafts was confirmed by active tissue growth (p < .05). Functional vascular connections between the cardiac lobe and the CAM vascular network were demonstrated by confocal fluorescence microscopy as well as corrosion casting and scanning electron microscopy (SEM). Bulk transcriptional profiling of the cardiac lobe demonstrated the enhanced expression of many genes relative to alveolar epithelial cell (CD11b-/CD31-) control cells, but only the upregulation of Ereg and Fgf6 compared to the less well-vascularized right upper lobe. The growth of actively regenerating non-neoplastic adult tissue on the CAM demonstrates that functional lumenization can occur between species (mouse and chick) and across the developmental spectrum (adult and embryo).


Subject(s)
Chorioallantoic Membrane , Neovascularization, Physiologic , Mice , Animals , Chorioallantoic Membrane/blood supply , Chickens , Neovascularization, Pathologic , Lung
5.
Mol Biol Rep ; 51(1): 1026, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340708

ABSTRACT

BACKGROUND: Angiogenesis, the biological mechanism by which new blood vessels are generated from existing ones, plays a vital role in growth and development. Effective preclinical screening is necessary for the development of medications that may enhance or inhibit angiogenesis in the setting of different disorders. Traditional in vitro and, in vivo models of angiogenesis are laborious and time-consuming, necessitating advanced infrastructure for embryo culture. MAIN BODY: A challenge encountered by researchers studying angiogenesis is the lack of appropriate techniques to evaluate the impact of regulators on the angiogenic response. An ideal test should possess reliability, technical simplicity, easy quantifiability, and, most importantly, physiological relevance. The CAM model, leveraging the extraembryonic membrane of the chicken embryo, offers a unique combination of accessibility, low cost, and rapid development, making it an attractive option for angiogenesis assays. This review evaluates the strengths and limitations of the CAM model in the context of its anatomical and physiological properties, and its relevance to human pathophysiological conditions. Its abundant capillary network makes it a common choice for studying angiogenesis. The CAM assay serves as a substitute for animal models and offers a natural setting for developing blood vessels and the many elements involved in the intricate interaction with the host. Despite its advantages, the CAM model's limitations are notable. These include species-specific responses that may not always extrapolate to humans and the ethical considerations of using avian embryos. We discuss methodological adaptations that can mitigate some of these limitations and propose future directions to enhance the translational relevance of this model. This review underscores the CAM model's valuable role in angiogenesis research and aims to guide researchers in optimizing its use for more predictive and robust preclinical studies. CONCLUSION: The highly vascularized chorioallantoic membrane (CAM) of fertilized chicken eggs is a cost-effective and easily available method for screening angiogenesis, in comparison to other animal models.


Subject(s)
Chorioallantoic Membrane , Neovascularization, Physiologic , Chorioallantoic Membrane/blood supply , Animals , Chick Embryo , Humans , Neovascularization, Pathologic , Chickens , Angiogenesis
6.
Adv Exp Med Biol ; 1451: 55-74, 2024.
Article in English | MEDLINE | ID: mdl-38801571

ABSTRACT

The complex cytoplasmic DNA virus known as the fowlpox virus (FWPV) is a member of the avipoxvirus genus, Subfamily Chordopoxvirinae, and Family Poxviridae. The large genome size of FWPV makes it a potential vector for the creation of vaccines against a range of serious veterinary and human ailments. It also allows for multiple gene insertion and the generation of abortive infection in mammalian cells. The virus, which causes fowlpox in chickens and turkeys, is mainly transmitted to poultry through aerosols or biting insects. Fowlpox is a highly contagious disease that affects both domestic and wild birds, causing cutaneous and/or diphtheritic illnesses. To control the illness, strict hygiene practices and immunization with FWPV attenuated strains or antigenically similar pigeon pox virus vaccines are employed. Recent years have seen an increase in fowlpox outbreaks in chicken flocks, primarily due to the introduction of novel forms of FWPV. It is believed that the pathogenic characteristics of these strains are enhanced by the integration of reticuloendotheliosis virus sequences of variable lengths into the FWPV genome. The standard laboratory diagnosis of FPV involves histopathological analysis, electron microscopy, virus isolation on chorioallantoic membrane (CAM) of embryonated chicken eggs or cell cultures, and serologic techniques. For quick and consistent diagnosis, polymerase chain reaction (PCR) has proven to be the most sensitive method. PCR is used in concert with restriction endonuclease enzyme analysis (REA) to identify, differentiate, and characterize the molecular makeup of isolates of the fowlpox virus. Sequencing of the amplified fragments is then done.


Subject(s)
Fowlpox virus , Fowlpox , Fowlpox virus/genetics , Animals , Fowlpox/virology , Chickens/virology , Genome, Viral
7.
Genomics ; 115(2): 110564, 2023 03.
Article in English | MEDLINE | ID: mdl-36642281

ABSTRACT

The chicken chorioallantoic membrane (CAM) is an extraembryonic membrane that is vital for the embryo. It undergoes profound cell differentiation between 11 and 15 days of embryonic incubation (EID), which corresponds to the acquisition of its physiological functions. To gain insight into the functional genes that accompany these biological changes, RNA sequencing of the CAM at EID11 and EID15 was performed. Results showed that CAM maturation coincides with the overexpression of 4225 genes, including many genes encoding proteins involved in mineral metabolism, innate immunity, homeostasis, angiogenesis, reproduction, and regulation of hypoxia. Of these genes, some exhibit variability in expression depending on the chicken breed (broiler versus layer breeds). Besides the interest of these results for the poultry sector, the identification of new functional gene candidates opens additional research avenues in the field of developmental biology.


Subject(s)
Chickens , Chorioallantoic Membrane , Chick Embryo , Animals , Chorioallantoic Membrane/metabolism , Ion Transport , Sequence Analysis, RNA , Immunity, Innate/genetics
8.
Cancer Cell Int ; 23(1): 34, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841751

ABSTRACT

BACKGROUND: The chorioallantoic membrane (CAM) assay is a well-established technique to evaluate tumor invasion and angiogenesis and may overcome the shortcoming of the patient-derived xenograft (PDX) mouse model. Currently, few reports have described lung cancer invasion and angiogenesis in the CAM assay. We therefore used the CAM assay in the evaluation of lung cancer. METHOD: Lung cancer cell line-derived organoids or lung cancer cell lines were transplanted into the CAM on embryonic development day (EDD) 10, and an analysis was performed on EDD 15. Microscopic and macroscopic images and movies of the grafts on the CAM were captured and analyzed. The relationships between the graft and chick vessels were evaluated using immunohistochemistry. RESULTS: We transplanted lung cancer cell lines and cell line-derived organoid into a CAM to investigate angiogenesis and invasion. They engrafted on the CAM at a rate of 50-83%. A549-OKS cells showed enhanced cell invasion and angiogenesis on the CAM in comparison to A549-GFP cells as was reported in vitro. Next, we found that A549-TIPARP cells promoted angiogenesis on the CAM. RNA-seq identified 203 genes that were upregulated more than twofold in comparison to A549-GFP cells. A pathway analysis revealed many upregulated pathways related to degradation and synthesis of the extracellular matrix in A549-TIPARP cells. CONCLUSIONS: The CAM assay can be used to evaluate and research invasion and angiogenesis in lung cancer. The elevated expression of TIPARP in lung cancer may induce angiogenesis by remodeling the extracellular matrix.

9.
BMC Cancer ; 23(1): 1194, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057796

ABSTRACT

BACKGROUND: Myxofibrosarcoma is a rare malignant soft tissue sarcoma characterised by multiple local recurrence and can become of higher grade with each recurrence. Consequently, myxofibrosarcoma represents a burden for patients, a challenge for clinicians, and an interesting disease to study tumour progression. Currently, few myxofibrosarcoma preclinical models are available. METHODS: In this paper, we present a spontaneously immortalised myxofibrosarcoma patient-derived cell line (MF-R 3). We performed phenotypic characterization through multiple biological assays and analyses: proliferation, clonogenic potential, anchorage-independent growth and colony formation, migration, invasion, AgNOR staining, and ultrastructural evaluation. RESULTS: MF-R 3 cells match morphologic and phenotypic characteristics of the original tumour as 2D cultures, 3D aggregates, and on the chorioallantoic membrane of chick embryos. Overall results show a clear neoplastic potential of this cell line. Finally, we tested MF-R 3 sensitivity to anthracyclines in 2D and 3D conditions finding a good response to these drugs. CONCLUSIONS: In conclusion, we established a novel patient-derived myxofibrosarcoma cell line that, together with the few others available, could serve as an important model for studying the molecular pathogenesis of myxofibrosarcoma and for testing new drugs and therapeutic strategies in diverse experimental settings.


Subject(s)
Fibrosarcoma , Histiocytoma, Malignant Fibrous , Sarcoma , Animals , Adult , Humans , Chick Embryo , Fibrosarcoma/drug therapy , Fibrosarcoma/pathology , Sarcoma/drug therapy , Sarcoma/pathology , Cell Line, Tumor
10.
Microsc Microanal ; 29(4): 1523-1530, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37488818

ABSTRACT

Culture of shell-free and windowed eggs for drug testing and other experiments has been perfected for smaller eggs such as those of chickens, where the developing blood vessels of the chorioallantoic membrane (CAM) become accessible for manipulative studies. However, due to the thickness and hardness of the ostrich egg shell, such techniques are not applicable. Using a tork craft mini rotary and a drill bit, we established windowed egg, in-shell-membrane windowed egg, and in-shell-membrane shell-free methods in the ostrich egg, depending on whether the shell membranes were retained or not. Concomitant study of the developing CAM revealed that at embryonic day 16 (E16), the three layers of the CAM were clearly delineated and at E25, the chorionic capillaries had fused with the epithelium while the CAM at E37 had reached maturity and the chorion and the allantois were both 3-4 times thicker and villous cavity (VC) and capillary-covering cells were well delineated. Both intussusceptive and sprouting angiogenesis were found to be the predominant modes of vascular growth in the ostrich CAM. Development and maturation of the ostrich CAM are similar to those of the well-studied chicken egg, albeit its incubation time being twice in duration.


Subject(s)
Chorioallantoic Membrane , Struthioniformes , Animals , Chorioallantoic Membrane/blood supply , Chickens , Allantois/blood supply , Chorion/blood supply
11.
Drug Dev Ind Pharm ; 49(11): 667-679, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37824711

ABSTRACT

OBJECTIVE: Present study was to observe the therapeutic aspects of seed cake extracts of Ocimum sanctum against the oral cancer cell line with the activation of p53 apoptotic pathway. METHOD: Seed cake extracts were characterized using GC-MS analysis. Cytotoxic activity was observed on KB cells and L929 cell through MTT assay and scratch assay. Antioxidant activity on KB cells were determined using enzymatic and non enzyme content in the treated cells. Chick chorioallantoic membrane (CAM) was established to check the presence of blood vessel formation and neuvasculature pattern in the treated fertilized eggs. DNA fragmentation and gene expression studies were also determined in the treated cells to check the upregulation of apoptotic pathways. RESULTS: GC-MS analysis confirmed alkaloids, phenols, and many. The cytotoxic activity showed maximum antiproliferative potential with aqueous extract, whereas no cytotoxic effect was observed on L929 cells. The ethanolic and aqueous extract has shown a greater SI value. Scratch assay has signified that aqueous extract has a lower migration rate of KB cells. Aqueous extract showed maximum enzymatic activity and lower malondialdehyde content in cells treated with ethanolic extract. CAM model confirmed that eggs treated with aqueous extract has shown inhibition of vasculature pattern and dissolutions of blood vessels. DNA Fragmentation and Gene expression studies confirmed maximum fold in the KB cell treated with an aqueous extract of seed cake leading to activation of p53 dependent apoptotic pathway. CONCLUSION: The potent therapeutic properties of seed cake extracts have been proven, and they can be used as herbal treatments to prevent oral cancer.


Subject(s)
Alkaloids , Antineoplastic Agents , Mouth Neoplasms , Humans , Tumor Suppressor Protein p53 , Plant Extracts/pharmacology , Seeds , Mouth Neoplasms/drug therapy , Ethanol
12.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373007

ABSTRACT

Canine osteosarcoma (OS) is an aggressive bone tumor with high metastatic potential and poor prognosis, mainly due to metastatic disease. Nanomedicine-based agents can be used to improve both primary and metastatic tumor treatment. Recently, gold nanoparticles were shown to inhibit different stages of the metastatic cascade in various human cancers. Here, we assessed the potential inhibitory effect of the glutathione-stabilized gold nanoparticles (Au-GSH NPs) on canine OS cells extravasation, utilizing the ex ovo chick embryo chorioallantoic membrane (CAM) model. The calculation of cells extravasation rates was performed using wide-field fluorescent microscopy. Transmission electron microscopy and Microwave Plasma Atomic Emission Spectroscopy revealed Au-GSH NPs absorption by OS cells. We demonstrated that Au-GSH NPs are non-toxic and significantly inhibit canine OS cells extravasation rates, regardless of their aggressiveness phenotype. The results indicate that Au-GSH NPs can act as a possible anti metastatic agent for OS treatment. Furthermore, the implemented CAM model may be used as a valuable preclinical platform in veterinary medicine, such as testing anti-metastatic agents.


Subject(s)
Bone Neoplasms , Metal Nanoparticles , Osteosarcoma , Chick Embryo , Animals , Dogs , Humans , Chickens , Gold/pharmacology , Gold/chemistry , Chorioallantoic Membrane/pathology , Metal Nanoparticles/chemistry , Bone Neoplasms/pathology , Glutathione , Osteosarcoma/drug therapy , Osteosarcoma/pathology
13.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835099

ABSTRACT

Wound healing is a complex process requiring an adequate supply of the wound area with oxygen and nutrients by neo-vascularization, to renew tissue. Local ischemia can result in the formation of chronic wounds. Since there is a lack of wound healing models for ischemic wounds, we aimed to develop a new one, based on chick chorioallantoic membrane (CAM) integrated split skin grafts and induction of ischemia with photo-activating Rose Bengal (RB) in a two-part study: (1) investigation of the thrombotic effect of photo-activated RB in CAM vessels and (2) investigation of the influence of photo-activated RB on CAM integrated human split skin xenografts. In both study phases, we observed a typical pattern of vessel changes after RB activation with a 120 W 525/50 nm green cold light lamp in the region of interest: intravascular haemostasis and a decrease in vessel diameter within 10 min of treatment. In total, the diameter of 24 blood vessels was measured before and after 10 min of illumination. Mean relative reduction of vessel diameter after treatment was 34.8% (12.3%-71.4%; p < 0.001). The results indicate that the present CAM wound healing model can reproduce chronic wounds without inflammation due to the statistically significant reduction of blood flow in the selected area using RB. Combined with xenografted human split skin grafts, we established the set up for a new chronic wound healing model for the research of regenerative processes following ischemic damage of the tissue.


Subject(s)
Rose Bengal , Skin Transplantation , Animals , Humans , Rose Bengal/pharmacology , Chorioallantoic Membrane , Feasibility Studies , Skin , Chickens , Ischemia
14.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674806

ABSTRACT

Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved.


Subject(s)
Coculture Techniques , Head and Neck Neoplasms , Matrix Metalloproteinase 9 , Mesenchymal Stem Cells , Humans , Bone Marrow Cells , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mesenchymal Stem Cells/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Stromal Cells , Tumor Microenvironment
15.
Cutan Ocul Toxicol ; 42(1): 8-11, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36469932

ABSTRACT

BACKGROUND: Literature on the effects of second-generation H1-antihistamines on angiogenesis is limited. OBJECTIVES: To investigate the effects of cetirizine, desloratadine, and rupatadine (second-generation H1-antihistamines commonly used in dermatology clinics) on angiogenesis in an in vivo chick chorioallantoic membrane (CAM) model. METHODS: The study was approved by the local ethics committee on animal experimentation. Forty fertilized specific pathogen free eggs were incubated and kept under appropriate temperature and humidity control. Drug solutions were prepared in identical concentrations by dissolving powders in phosphate-buffered saline (PBS). On the third day of the incubation, a small window was opened on the CAM and 0.1 mL desloratadine (1.5 µg/0.1 mL) in the first group, 0.1 mL cetirizine (1.5 µg/0.1 mL) in the second group, 0.1 mL rupatadine in the third group (1.5 µg/0.1 mL), and PBS (0.1 mL) in the fourth group were administered by injection. On the eighth day of incubation, the vascular structures of the CAMs were macroscopically examined and standard digital photographs were taken. The digital images were analyzed and data including mean vessel density, thickness, and number were compared between groups. p < 0.05 was considered statistically significant. RESULTS: Vessel densities were similar in the desloratadine, cetirizine, and control groups, whereas they were significantly less in the rupatadine group (p = 0.01). Furthermore, the rupatadine group had significantly lower vessel thickness and number compared with the other groups (p < 0.05 for both). CONCLUSIONS: Rupatadine showed anti-angiogenic effects in the chick CAM model, compared with desloratadine and cetirizine. The anti-angiogenic effect of rupatadine could be due to its platelet-activating factor (PAF) receptor inhibition. Thus, rupatadine could be a treatment agent in pathological processes in which angiogenesis is responsible. Further studies with larger series are needed to clarify this potential.


Subject(s)
Cetirizine , Histamine H1 Antagonists, Non-Sedating , Animals , Cetirizine/pharmacology , Cetirizine/therapeutic use , Chorioallantoic Membrane , Chickens
16.
AAPS PharmSciTech ; 24(6): 157, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37470885

ABSTRACT

Brinzolamide is an effective carbonic anhydrase inhibitor widely used in glaucoma therapy but limits its application due to inadequate aqueous solubility and permeability. The aim of the present research work is the development and characterization of brinzolamide-loaded ultradeformable bilosomes to enhance the corneal permeation of the drug. These ultradeformable bilosomes were prepared by ethanol injection method and evaluated for physicochemical properties, particle size, morphology, drug release, ultra-deformability, corneal permeation, and irritation potential. The optimized formulation exhibited an average particle size of 205.4 ± 2.04 nm with mono-dispersity (0.109 ± 0.002) and showed entrapment efficiency of 75.02 ± 0.017%, deformability index of 3.91, and release the drug in a sustained manner. The brinzolamide-loaded ultradeformable bilosomes released 76.29 ± 3.77% of the drug in 10 h that is 2.25 times higher than the free drug solution. The bilosomes were found non-irritant to eyes with a potential irritancy score of 0 in Hen's egg-chorioallantoic membrane assay. Brinzolamide-loaded ultradeformable bilosomes showed 83.09 ± 5.1% of permeation in 6 h and trans-corneal permeability of 8.78 ± 0.14 cm/h during the ex vivo permeation study. The acquired findings clearly revealed that the brinzolamide-loaded ultradeformable bilosomes show promising output and are useful in glaucoma therapy.


Subject(s)
Carbonic Anhydrase Inhibitors , Glaucoma , Animals , Female , Carbonic Anhydrase Inhibitors/pharmacology , Chickens , Cornea , Glaucoma/drug therapy , Particle Size
17.
Bull Exp Biol Med ; 174(4): 405-412, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36881281

ABSTRACT

The possibilities of using the chick embryo and its individual structures as a model system in experimental ophthalmology are considered. Cultures of the retina and spinal ganglia from chick embryos are used in the development of new methods for the treatment of glaucomatous optic neuropathy and ischemic optic neuropathy. The chorioallantoic membrane is used for modelling vascular pathologies of the eye, screening of anti-VEGF drugs, and assessing biocompatibility of implants. Co-culturing of chick embryo nervous tissue and human corneal cells makes it possible to study the processes of corneal reinnervation. The use of chick embryo cells and tissues in the "organ-on-a-chip" system opens up wide opportunities for fundamental and applied ophthalmological studies.


Subject(s)
Ophthalmology , Animals , Chick Embryo , Humans , Chorioallantoic Membrane/blood supply , Models, Biological , Retina
18.
Angiogenesis ; 25(1): 35-45, 2022 02.
Article in English | MEDLINE | ID: mdl-34905124

ABSTRACT

Angiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed "coalescent angiogenesis." In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development.


Subject(s)
Chorioallantoic Membrane , Neovascularization, Physiologic , Animals , Capillaries , Morphogenesis , Neovascularization, Pathologic
19.
Microvasc Res ; 140: 104304, 2022 03.
Article in English | MEDLINE | ID: mdl-34906560

ABSTRACT

The chick embryo chorioallantoic membrane (CAM) is a rich vascularized extraembryonic membrane that is commonly used as an in vivo experimental model to study molecules with angiogenic and anti-angiogenic activity, tumor growth and metastasis. Among other applications of the CAM assay, more recently this assay has been used for the study of acellular scaffolds and of organoids, and of their angiogenic capacity. The aim of this review article is to summarize the literature data concerning these two new applications of the CAM assay and to underline the advantages of this assay.


Subject(s)
Biological Assay , Chorioallantoic Membrane/blood supply , Neoplasms/blood supply , Neovascularization, Pathologic , Neovascularization, Physiologic , Regenerative Medicine , Tissue Scaffolds , Angiogenesis Modulating Agents/pharmacology , Animals , Neoplasm Metastasis , Neoplasms/pathology , Neovascularization, Physiologic/drug effects , Organoids , Tumor Burden
20.
Microvasc Res ; 142: 104372, 2022 07.
Article in English | MEDLINE | ID: mdl-35483521

ABSTRACT

Among various anti-cancer therapies, tumor vascular disrupting agents (VDAs) play a crucial role, for which their off-targeting effects on normal vessels need also to be investigated. The purpose of this study was to set up an in-ovo platform that combines a laser speckle contrast imaging (LSCI) modality with chick embryo chorioallantoic membrane (CAM) to real-time monitor vascular diameters and perfusion without and with intravascular injection. Two eggshell windows for both observation or measurement and injection were opened. Dynamic blood perfusion images and corresponding statistic graphs were acquired by using a LSCI unit on CAMs from embryo date (ED) 9 to ED15. A dedicated fine needle catheter was made for slow intravascular administration over 30 min with simultaneous LSCI acquisition. To verify the connectivity between CAM vessels and the embryonic circulations in the egg, contrast-enhanced 3D micro computed tomography (µCT), 2D angiography and histology were executed. This platform was successfully established to acquire, quantify and demonstrate vascular and hemodynamic information from the CAM. Chick embryos even with air cell opened remained alive from ED9 to ED15. Through collecting LSCI derived CAM vascular diameter and perfusion parameters, ED12 was determined as the best time window for vasoactive drug studies. A reverse correlation between CAM vessel diameter and blood perfusion rate was found (p < 0.002). Intravascular infusion and simultaneous LSCI acquisition for 30 min in ovo proved feasible. Contrast-enhanced angiography and histomorphology could characterize the connectivity between CAM vasculature and embryonic circulation. This LSCI-CAM platform was proved effective for investigating the in-ovo hemodynamics, which paves the road for further preclinical research on vasoactive medications including VDAs.


Subject(s)
Chorioallantoic Membrane , Laser Speckle Contrast Imaging , Animals , Chick Embryo , Chorioallantoic Membrane/blood supply , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL