Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 183(7): 2020-2035.e16, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33326746

ABSTRACT

Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.


Subject(s)
High-Throughput Screening Assays , Transcription Factors/metabolism , Amino Acid Sequence , CRISPR-Cas Systems/genetics , Female , Gene Silencing , Genes, Reporter , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , K562 Cells , Lentivirus/physiology , Molecular Sequence Annotation , Mutation/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Domains , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Reproducibility of Results , Transcription, Genetic , Zinc Fingers
2.
Genes Dev ; 37(5-6): 218-242, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36931659

ABSTRACT

Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.


Subject(s)
Gene Expression Regulation , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation/genetics , Chromatin Assembly and Disassembly , Chromatin , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
3.
Trends Biochem Sci ; 47(7): 582-595, 2022 07.
Article in English | MEDLINE | ID: mdl-35351360

ABSTRACT

Mutations in BRCA1 and BARD1 predispose carriers to breast and ovarian cancers. The BRCA1 and BARD1 proteins form a heterodimeric complex (BRCA1/BARD1) that regulates many biological processes, including transcription and DNA double-stranded break repair. These functions are mediated by the only known enzymatic activity of BRCA1/BARD1 in its capacity as an E3 ubiquitin ligase and its role as a central hub for many large protein complexes. But the mechanisms by which BRCA1/BARD1 interfaces with chromatin, where it exerts its major functions, have remained unknown. Here, we review recent advancements in structural and cellular biology that have provided critical insights into how BRCA1/BARD1 serves as both a nucleosome reader and writer to facilitate transcriptional regulation and DNA repair by homologous recombination.


Subject(s)
Nucleosomes , Tumor Suppressor Proteins , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Dev Biol ; 515: 30-45, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38971398

ABSTRACT

The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.


Subject(s)
Chromatin , Ectoderm , Gene Expression Regulation, Developmental , Homeostasis , Ectoderm/metabolism , Ectoderm/embryology , Animals , Chromatin/metabolism , Epigenesis, Genetic , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Histones/metabolism
5.
J Biol Chem ; 300(9): 107604, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059488

ABSTRACT

The HIRA histone chaperone complex is comprised of four protein subunits: HIRA, UBN1, CABIN1, and transiently associated ASF1a. All four subunits have been demonstrated to play a role in the deposition of the histone variant H3.3 onto areas of actively transcribed euchromatin in cells. The mechanism by which these subunits function together to drive histone deposition has remained poorly understood. Here we present biochemical and biophysical data supporting a model whereby ASF1a delivers histone H3.3/H4 dimers to the HIRA complex, H3.3/H4 tetramerization drives the association of two HIRA/UBN1 complexes, and the affinity of the histones for DNA drives release of ASF1a and subsequent histone deposition. These findings have implications for understanding how other histone chaperone complexes may mediate histone deposition.


Subject(s)
Cell Cycle Proteins , DNA , Histone Chaperones , Histones , Protein Multimerization , Transcription Factors , Histones/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Histone Chaperones/metabolism , Histone Chaperones/chemistry , DNA/metabolism , DNA/chemistry , Protein Binding , Nuclear Proteins , Molecular Chaperones
6.
Genes Dev ; 31(5): 439-450, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28385788

ABSTRACT

Lymphocyte differentiation is set to produce myriad immune effector cells with the ability to respond to multitudinous foreign substances. The uniqueness of this developmental system lies in not only the great diversity of cellular functions that it can generate but also the ability of its differentiation intermediates and mature effector cells to expand upon demand, thereby providing lifelong immunity. Surprisingly, the goals of this developmental system are met by a relatively small group of DNA-binding transcription factors that work in concert to control the timing and magnitude of gene expression and fulfill the demands for cellular specialization, expansion, and maintenance. The cellular and molecular mechanisms through which these lineage-promoting transcription factors operate have been a focus of basic research in immunology. The mechanisms of development discerned in this effort are guiding clinical research on disorders with an immune cell base. Here, I focus on IKAROS, one of the earliest regulators of lymphoid lineage identity and a guardian of lymphocyte homeostasis.


Subject(s)
Cell Differentiation/genetics , Cell Differentiation/immunology , Ikaros Transcription Factor/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Animals , Cell Lineage/genetics , Cell Lineage/immunology , Gene Expression Regulation, Developmental , Homeostasis/genetics , Homeostasis/immunology , Humans , Ikaros Transcription Factor/immunology , Transcription Factors/genetics , Transcription Factors/immunology
7.
Genes Dev ; 31(10): 973-989, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28607179

ABSTRACT

Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition.


Subject(s)
Chromatin/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, B-Cell/genetics , Leukemia, B-Cell/physiopathology , Animals , Cell Line, Tumor , Cell Lineage/genetics , Chromatin/metabolism , Drug Resistance, Neoplasm/genetics , Gene Knockout Techniques , Lymphoma, Non-Hodgkin/genetics , Mice , Mice, Inbred C57BL , Phenotype , Repressor Proteins , Signal Transduction/genetics
8.
Immunol Rev ; 300(1): 134-151, 2021 03.
Article in English | MEDLINE | ID: mdl-33734444

ABSTRACT

Proper timing of gene expression is central to lymphocyte development and differentiation. Lymphocytes often delay gene activation for hours to days after the onset of signaling components, which act on the order of seconds to minutes. Such delays play a prominent role during the intricate choreography of developmental events and during the execution of an effector response. Though a number of mechanisms are sufficient to explain timing at short timescales, it is not known how timing delays are implemented over long timescales that may span several cell generations. Based on the literature, we propose that a class of cis-regulatory elements, termed "timing enhancers," may explain how timing delays are controlled over these long timescales. By considering chromatin as a kinetic barrier to state switching, the timing enhancer model explains experimentally observed dynamics of gene expression where other models fall short. In this review, we elaborate on features of the timing enhancer model and discuss the evidence for its generality throughout development and differentiation. We then discuss potential molecular mechanisms underlying timing enhancer function. Finally, we explore recent evidence drawing connections between timing enhancers and genetic risk for immunopathology. We argue that the timing enhancer model is a useful framework for understanding how cis-regulatory elements control the central dimension of timing in lymphocyte biology.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Cell Differentiation , Enhancer Elements, Genetic/genetics
9.
Trends Biochem Sci ; 45(11): 961-977, 2020 11.
Article in English | MEDLINE | ID: mdl-32684431

ABSTRACT

Nuclear processes such as DNA replication, transcription, and RNA processing each depend on the concerted action of many different protein and RNA molecules. How biomolecules with shared functions find their way to specific locations has been assumed to occur largely by diffusion-mediated collisions. Recent studies have shown that many nuclear processes occur within condensates that compartmentalize and concentrate the protein and RNA molecules required for each process, typically at specific genomic loci. These condensates have common features and emergent properties that provide the cell with regulatory capabilities beyond canonical molecular regulatory mechanisms. We describe here the shared features of nuclear condensates, the components that produce locus-specific condensates, elements of specificity, and the emerging understanding of mechanisms regulating these compartments.


Subject(s)
Cell Nucleus/metabolism , DNA/metabolism , Proteins/metabolism , RNA/metabolism , Cell Nucleus/chemistry , DNA/chemistry , Humans , Proteins/chemistry , RNA/chemistry
10.
J Biol Chem ; 299(8): 104996, 2023 08.
Article in English | MEDLINE | ID: mdl-37394010

ABSTRACT

A critical component of gene regulation is recognition of histones and their post-translational modifications by transcription-associated proteins or complexes. Although many histone-binding reader modules have been characterized, the bromo-adjacent homology (BAH) domain family of readers is still poorly characterized. A pre-eminent member of this family is PBRM1 (BAF180), a component of the PBAF chromatin-remodeling complex. PBRM1 contains two adjacent BAH domains of unknown histone-binding potential. We evaluated the tandem BAH domains for their capacity to associate with histones and to contribute to PBAF-mediated gene regulation. The BAH1 and BAH2 domains of human PBRM1 broadly interacted with histone tails, but they showed a preference for unmodified N-termini of histones H3 and H4. Molecular modeling and comparison of the BAH1 and BAH2 domains with other BAH readers pointed to a conserved binding mode via an extended open pocket and, in general, an aromatic cage for histone lysine binding. Point mutants that were predicted to disrupt the interaction between the BAH domains and histones reduced histone binding in vitro and resulted in dysregulation of genes targeted by PBAF in cellulo. Although the BAH domains in PBRM1 were important for PBAF-mediated gene regulation, we found that overall chromatin targeting of PBRM1 was not dependent on BAH-histone interaction. Our findings identify a function of the PBRM1 BAH domains in PBAF activity that is likely mediated by histone tail interaction.


Subject(s)
Chromatin , Histones , Humans , Histones/metabolism , Chromatin/genetics , Gene Expression Regulation , Protein Binding
11.
Plant J ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37680033

ABSTRACT

Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.

12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34011608

ABSTRACT

Loss-of-function mutations in chromatin remodeler gene ARID1A are a cause of Coffin-Siris syndrome, a developmental disorder characterized by dysgenesis of corpus callosum. Here, we characterize Arid1a function during cortical development and find unexpectedly selective roles for Arid1a in subplate neurons (SPNs). SPNs, strategically positioned at the interface of cortical gray and white matter, orchestrate multiple developmental processes indispensable for neural circuit wiring. We find that pancortical deletion of Arid1a leads to extensive mistargeting of intracortical axons and agenesis of corpus callosum. Sparse Arid1a deletion, however, does not autonomously misroute callosal axons, implicating noncell-autonomous Arid1a functions in axon guidance. Supporting this possibility, the ascending axons of thalamocortical neurons, which are not autonomously affected by cortical Arid1a deletion, are also disrupted in their pathfinding into cortex and innervation of whisker barrels. Coincident with these miswiring phenotypes, which are reminiscent of subplate ablation, we unbiasedly find a selective loss of SPN gene expression following Arid1a deletion. In addition, multiple characteristics of SPNs crucial to their wiring functions, including subplate organization, subplate axon-thalamocortical axon cofasciculation ("handshake"), and extracellular matrix, are severely disrupted. To empirically test Arid1a sufficiency in subplate, we generate a cortical plate deletion of Arid1a that spares SPNs. In this model, subplate Arid1a expression is sufficient for subplate organization, subplate axon-thalamocortical axon cofasciculation, and subplate extracellular matrix. Consistent with these wiring functions, subplate Arid1a sufficiently enables normal callosum formation, thalamocortical axon targeting, and whisker barrel development. Thus, Arid1a is a multifunctional regulator of subplate-dependent guidance mechanisms essential to cortical circuit wiring.


Subject(s)
Cerebral Cortex/metabolism , Chromatin/chemistry , Corpus Callosum/metabolism , DNA-Binding Proteins/genetics , Loss of Function Mutation , Thalamus/metabolism , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Animals , Cerebral Cortex/pathology , Chromatin/metabolism , Connectome , Corpus Callosum/pathology , DNA-Binding Proteins/deficiency , Face/abnormalities , Face/pathology , Gene Deletion , Gene Expression Regulation , Gray Matter/metabolism , Gray Matter/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/metabolism , Hand Deformities, Congenital/pathology , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/pathology , Mice , Mice, Transgenic , Micrognathism/genetics , Micrognathism/metabolism , Micrognathism/pathology , Neck/abnormalities , Neck/pathology , Neural Pathways/metabolism , Neural Pathways/pathology , Neurons/metabolism , Neurons/pathology , Thalamus/pathology , Transcription Factors/deficiency , Vibrissae/metabolism , Vibrissae/pathology , White Matter/metabolism , White Matter/pathology
13.
Int J Mol Sci ; 25(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39337298

ABSTRACT

The six PCGF proteins (PCGF1-6) define the biochemical identity of Polycomb repressor complex 1 (PRC1) subcomplexes. While structural and functional studies of PRC1 subcomplexes have revealed their specialized roles in distinct aspects of epigenetic regulation, our understanding of the variation in the protein interaction networks of distinct PCGF subunits in different PRC1 complexes is incomplete. We carried out an affinity purification mass spectrometry (AP-MS) screening of three PCGF subunits, PCGF1 (NSPC1), PCGF2 (MEL18), and PCGF4 (BMI1), to define their interactome and potential cellular function in pluripotent human embryonal carcinoma cell "NT2". The bioinformatic analysis revealed that these interacting proteins cover a range of functional pathways, often involved in cell biology and chromatin regulation. We also found evidence of mutual regulation (at mRNA and protein level) between three distinct PCGF subunits. Furthermore, we confirmed that the disruption of these subunits results in reduced cell proliferation ability. We reveal an interplay between the compositional diversity of the distinct PCGF containing PRC1 complex and the potential role of PCGF proteins within the wider cellular network.


Subject(s)
Polycomb Repressive Complex 1 , Protein Interaction Maps , Protein Subunits , Humans , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Protein Subunits/metabolism , Protein Subunits/genetics , Cell Proliferation , Cell Line, Tumor , Protein Binding , Mass Spectrometry
14.
Dev Biol ; 482: 67-81, 2022 02.
Article in English | MEDLINE | ID: mdl-34896367

ABSTRACT

Cell fate changes during development, differentiation, and reprogramming are largely controlled at the transcription level. The DNA-binding transcription factors (TFs) often act in a combinatorial fashion to alter chromatin states and drive cell type-specific gene expression. Recent advances in fluorescent microscopy technologies have enabled direct visualization of biomolecules involved in the process of transcription and its regulatory events at the single-molecule level in living cells. Remarkably, imaging and tracking individual TF molecules at high temporal and spatial resolution revealed that they are highly dynamic in searching and binding cognate targets, rather than static and binding constantly. In combination with investigation using techniques from biochemistry, structure biology, genetics, and genomics, a more well-rounded view of transcription regulation is emerging. In this review, we briefly cover the technical aspects of live-cell single-molecule imaging and focus on the biological relevance and interpretation of the single-molecule dynamic features of transcription regulatory events observed in the native chromatin environment of living eukaryotic cells. We also discuss how these dynamic features might shed light on mechanistic understanding of transcription regulation.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics , Animals , DNA/biosynthesis , Single Molecule Imaging , Single-Cell Analysis
15.
J Biol Chem ; 298(11): 102578, 2022 11.
Article in English | MEDLINE | ID: mdl-36220390

ABSTRACT

Modification of histones provides a dynamic mechanism to regulate chromatin structure and access to DNA. Histone acetylation, in particular, plays a prominent role in controlling the interaction between DNA, histones, and other chromatin-associated proteins. Defects in histone acetylation patterns interfere with normal gene expression and underlie a wide range of human diseases. Here, we utilize Xenopus egg extracts to investigate how changes in histone acetylation influence transcription of a defined gene construct. We show that inhibition of histone deacetylase 1 and 2 (HDAC1/2) specifically counteracts transcription suppression by preventing chromatin compaction and deacetylation of histone residues H4K5 and H4K8. Acetylation of these sites supports binding of the chromatin reader and transcription regulator BRD4. We also identify HDAC1 as the primary driver of transcription suppression and show that this activity is mediated through the Sin3 histone deacetylase complex. These findings highlight functional differences between HDAC1 and HDAC2, which are often considered to be functionally redundant, and provide additional molecular context for their activity.


Subject(s)
Histones , Nuclear Proteins , Animals , Humans , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Histones/metabolism , Xenopus laevis/metabolism , Nuclear Proteins/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Chromatin , Acetylation , DNA/metabolism , Cell Cycle Proteins/metabolism
16.
J Biol Chem ; 298(3): 101623, 2022 03.
Article in English | MEDLINE | ID: mdl-35074427

ABSTRACT

Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Histones , Transcription Factors , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Lysine/metabolism , Methylation , Peptides/chemistry
17.
BMC Biol ; 20(1): 223, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36203191

ABSTRACT

BACKGROUND: The process of early development varies across the species-rich phylum Arthropoda. Owing to the limited research strategies for dissecting lineage-specific processes of development in arthropods, little is known about the variations in early arthropod development at molecular resolution. The Theridiidae spider, Parasteatoda tepidariorum, has its genome sequenced and could potentially contribute to dissecting early embryonic processes. RESULTS: We present genome-wide identification of candidate genes that exhibit locally restricted expression in germ disc forming stage embryos of P. tepidariorum, based on comparative transcriptomes of isolated cells from different regions of the embryo. A subsequent pilot screen by parental RNA interference identifies three genes required for body axis formation. One of them is a GATA-like gene that has been fast evolving after duplication and divergence from a canonical GATA family gene. This gene is designated fuchi nashi (fuchi) after its knockdown phenotypes, where the cell movement toward the formation of a germ disc was reversed. fuchi expression occurs in cells outside a forming germ disc and persists in the endoderm. Transcriptome and chromatin accessibility analyses of fuchi pRNAi embryos suggest that early fuchi activity regulates chromatin state and zygotic gene activation to promote endoderm specification and pattern formation. We also show that there are many uncharacterized genes regulated by fuchi. CONCLUSIONS: Our genome-based research using an arthropod phylogenetically distant from Drosophila identifies a lineage-specific, fast-evolving gene with key developmental roles in one of the earliest, genome-wide regulatory events, and allows for molecular exploration of the developmental variations in early arthropod embryos.


Subject(s)
Arthropods , Spiders , Animals , Arthropods/genetics , Chromatin/metabolism , Endoderm , Gene Expression Regulation, Developmental , Spiders/genetics , Transcriptional Activation , Zygote
18.
Development ; 146(12)2019 06 27.
Article in English | MEDLINE | ID: mdl-31249006

ABSTRACT

Understanding chromatin regulation holds enormous promise for controlling gene regulation, predicting cellular identity, and developing diagnostics and cellular therapies. However, the dynamic nature of chromatin, together with cell-to-cell heterogeneity in its structure, limits our ability to extract its governing principles. Single cell mapping of chromatin modifications, in conjunction with expression measurements, could help overcome these limitations. Here, we review recent advances in single cell-based measurements of chromatin modifications, including optimization to reduce DNA loss, improved DNA sequencing, barcoding, and antibody engineering. We also highlight several applications of these techniques that have provided insights into cell-type classification, mapping modification co-occurrence and heterogeneity, and monitoring chromatin dynamics.


Subject(s)
Chromatin/chemistry , Single-Cell Analysis/methods , Acetylation , Animals , Antibodies/chemistry , CpG Islands , DNA/chemistry , DNA Methylation , DNA Repair , Endonucleases/metabolism , Epigenesis, Genetic , Epigenome , Gene Expression Profiling , Gene Expression Regulation , Genetic Engineering/methods , Histones/chemistry , Humans , Mice , Sequence Analysis, DNA
19.
Development ; 146(19)2019 09 30.
Article in English | MEDLINE | ID: mdl-31570370

ABSTRACT

Histone post-translational modifications are key gene expression regulators, but their rapid dynamics during development remain difficult to capture. We applied a Fab-based live endogenous modification labeling technique to monitor the changes in histone modification levels during zygotic genome activation (ZGA) in living zebrafish embryos. Among various histone modifications, H3 Lys27 acetylation (H3K27ac) exhibited most drastic changes, accumulating in two nuclear foci in the 64- to 1k-cell-stage embryos. The elongating form of RNA polymerase II, which is phosphorylated at Ser2 in heptad repeats within the C-terminal domain (RNAP2 Ser2ph), and miR-430 transcripts were also concentrated in foci closely associated with H3K27ac. When treated with α-amanitin to inhibit transcription or JQ-1 to inhibit binding of acetyl-reader proteins, H3K27ac foci still appeared but RNAP2 Ser2ph and miR-430 morpholino were not concentrated in foci, suggesting that H3K27ac precedes active transcription during ZGA. We anticipate that the method presented here could be applied to a variety of developmental processes in any model and non-model organisms.


Subject(s)
Gene Expression Regulation, Developmental , Genome , Histones/metabolism , Lysine/metabolism , Transcription, Genetic , Zebrafish/embryology , Zebrafish/genetics , Zygote/metabolism , Acetylation/drug effects , Alpha-Amanitin/pharmacology , Animals , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental/drug effects , Histone Code/drug effects , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zygote/drug effects
20.
BMC Biol ; 19(1): 55, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33757516

ABSTRACT

BACKGROUND: The fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of "two-speed" genome organisms in the genome of which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. RESULTS: We performed RNA-seq on samples corresponding to all stages of the interaction of L. maculans with its host plant, either alive or dead (stem residues after harvest) in controlled conditions or in field experiments under natural inoculum pressure, over periods of time ranging from a few days to months or years. A total of 102 biological samples corresponding to 37 sets of conditions were analyzed. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are enriched in heterochromatin regions associated with H3K9me3 or H3K27me3 repressive marks. These findings provide support for the hypothesis that part of the fungal genes involved in niche adaptation is located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. CONCLUSION: This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.


Subject(s)
Brassica napus/microbiology , Fungal Proteins/genetics , Host-Pathogen Interactions , Leptosphaeria/genetics , Transcriptome/physiology , Fungal Proteins/metabolism , Genes, Fungal , Leptosphaeria/physiology , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL