ABSTRACT
Epigenetic dysregulation has emerged as a recurring mechanism in the etiology of neurodevelopmental disorders. Two such disorders, CHARGE and Kabuki syndromes, result from loss of function mutations in chromodomain helicase DNA-binding protein 7 (CHD7LOF) and lysine (K) methyltransferase 2D (KMT2DLOF), respectively. Although these two syndromes are clinically distinct, there is significant phenotypic overlap. We therefore expected that epigenetically driven developmental pathways regulated by CHD7 and KMT2D would overlap and that DNA methylation (DNAm) alterations downstream of the mutations in these genes would identify common target genes, elucidating a mechanistic link between these two conditions, as well as specific target genes for each disorder. Genome-wide DNAm profiles in individuals with CHARGE and Kabuki syndromes with CHD7LOF or KMT2DLOF identified distinct sets of DNAm differences in each of the disorders, which were used to generate two unique, highly specific and sensitive DNAm signatures. These DNAm signatures were able to differentiate pathogenic mutations in these two genes from controls and from each other. Analysis of the DNAm targets in each gene-specific signature identified both common gene targets, including homeobox A5 (HOXA5), which could account for some of the clinical overlap in CHARGE and Kabuki syndromes, as well as distinct gene targets. Our findings demonstrate how characterization of the epigenome can contribute to our understanding of disease pathophysiology for epigenetic disorders, paving the way for explorations of novel therapeutics.
Subject(s)
Abnormalities, Multiple/genetics , CHARGE Syndrome/genetics , DNA Methylation , Epigenesis, Genetic , Face/abnormalities , Hematologic Diseases/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/diagnosis , CHARGE Syndrome/diagnosis , Cell Line , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Genome, Human , Hematologic Diseases/diagnosis , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Reproducibility of Results , Sensitivity and Specificity , Vestibular Diseases/diagnosisABSTRACT
Background: Chromodomain helicase DNA-binding protein 7 (CHD7), which is associated with CHARGE (Coloboma, Heart defect, Atresia choanae, Restricted growth, Genital hypoplasia and Ear abnormality) syndrome is an important regulator in many vital developmental processes. However, its role during oocyte development remains unknown. Methods: We screened the Gene Expression Omnibus (GEO) database for expression levels of CHD7 during folliculogenesis. We generated a conditional knockout (cKO) mouse strain with oocyte-specific deletion of CHD7 (Gdf9-Cre:Chd7f/f ) using the Cre-loxP approach. Evaluation of follicle numbers and reproductive ability was then conducted. In addition, granulosa cell (GC) apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and cleaved caspase-3, using immunohistochemistry (IHC) and immunofluorescence (IF). GC proliferation was measured by Ki67 staining as evaluated by IHC. Results: In our study, we demonstrated that CHD7 has high expression throughout all developmental stages of the oocyte. We found that deletion of Chd7 in oocytes can cause infertility or sub-fertility in female mice and is associated with decreased follicle numbers at all stages. In addition, we found that GC apoptosis was significantly higher in cKO mice. Conclusions: To our knowledge, our study has been the first to show that CHD7 plays a specific role during oogenesis. Our findings provide new insights into CHD7-related infertility.