Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.606
Filter
Add more filters

Publication year range
1.
Cell ; 187(3): 545-562, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306981

ABSTRACT

Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.


Subject(s)
Biology , Computational Biology , Macromolecular Substances/chemistry
2.
Cell ; 186(12): 2705-2718.e17, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37295406

ABSTRACT

Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes.


Subject(s)
Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Microbiota , Neoplasms , Humans , Gastrointestinal Microbiome/genetics , Feces/microbiology , Metagenome , Anti-Bacterial Agents , Neoplasms/drug therapy
3.
Cell ; 184(15): 3981-3997.e22, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34157301

ABSTRACT

A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.


Subject(s)
Feedback, Physiological , Homeostasis/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Interleukin-2/metabolism , Membrane Microdomains/metabolism , Mice, Inbred C57BL , Models, Immunological , Paracrine Communication , Signal Transduction
4.
Immunity ; 56(2): 369-385.e6, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36720219

ABSTRACT

In allogeneic hematopoietic stem cell transplantation, donor αß T cells attack recipient tissues, causing graft-versus-host disease (GVHD), a major cause of morbidity and mortality. A central question has been how GVHD is sustained despite T cell exhaustion from chronic antigen stimulation. The current model for GVHD holds that disease is maintained through the continued recruitment of alloreactive effectors from blood into affected tissues. Here, we show, using multiple approaches including parabiosis of mice with GVHD, that GVHD is instead primarily maintained locally within diseased tissues. By tracking 1,203 alloreactive T cell clones, we fitted a mathematical model predicting that within each tissue a small number of progenitor T cells maintain a larger effector pool. Consistent with this, we identified a tissue-resident TCF-1+ subpopulation that preferentially engrafted, expanded, and differentiated into effectors upon adoptive transfer. These results suggest that therapies targeting affected tissues and progenitor T cells within them would be effective.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , T-Lymphocytes , Transplantation, Homologous/adverse effects , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods
5.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431249

ABSTRACT

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Subject(s)
Heart Conduction System , Macrophages/physiology , Animals , Connexin 43/metabolism , Female , Heart Atria/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/physiology
6.
Physiol Rev ; 104(3): 1265-1333, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38153307

ABSTRACT

The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.


Subject(s)
Arrhythmias, Cardiac , Models, Cardiovascular , Humans , Arrhythmias, Cardiac/physiopathology , Animals , Computer Simulation , Translational Research, Biomedical , Myocytes, Cardiac/physiology , Electrophysiological Phenomena/physiology , Action Potentials/physiology
7.
Annu Rev Neurosci ; 45: 533-560, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803587

ABSTRACT

The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.


Subject(s)
Neocortex , Cognition/physiology , Executive Function , Memory, Short-Term/physiology , Neocortex/physiology , Nerve Net/physiology
8.
Trends Biochem Sci ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39054240

ABSTRACT

Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.

9.
Mol Cell ; 75(1): 172-183.e9, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31178355

ABSTRACT

Ribosomal frameshifting during the translation of RNA is implicated in human disease and viral infection. While previous work has uncovered many details about single RNA frameshifting kinetics in vitro, little is known about how single RNA frameshift in living systems. To confront this problem, we have developed technology to quantify live-cell single RNA translation dynamics in frameshifted open reading frames. Applying this technology to RNA encoding the HIV-1 frameshift sequence reveals a small subset (∼8%) of the translating pool robustly frameshift. Frameshifting RNA are translated at similar rates as non-frameshifting RNA (∼3 aa/s) and can continuously frameshift for more than four rounds of translation. Fits to a bursty model of frameshifting constrain frameshifting kinetic rates and demonstrate how ribosomal traffic jams contribute to the persistence of the frameshifting state. These data provide insight into retroviral frameshifting and could lead to alternative strategies to perturb the process in living cells.


Subject(s)
Frameshifting, Ribosomal , HIV-1/genetics , Open Reading Frames , Osteoblasts/metabolism , RNA, Viral/genetics , Single Molecule Imaging/methods , Base Pairing , Cell Line, Tumor , HIV-1/metabolism , Humans , Models, Genetic , Nucleic Acid Conformation , Oligonucleotide Probes/chemical synthesis , Oligonucleotide Probes/genetics , Oligonucleotide Probes/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Osteoblasts/virology , RNA, Viral/chemistry , RNA, Viral/metabolism , Staining and Labeling/methods
10.
Proc Natl Acad Sci U S A ; 121(39): e2404928121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39302964

ABSTRACT

There has been much progress in understanding human social learning, including recent studies integrating social information into the reinforcement learning framework. Yet previous studies often assume identical payoffs between observer and demonstrator, overlooking the diversity of social information in real-world interactions. We address this gap by introducing a socially correlated bandit task that accommodates payoff differences among participants, allowing for the study of social learning under more realistic conditions. Our Social Generalization (SG) model, tested through evolutionary simulations and two online experiments, outperforms existing models by incorporating social information into the generalization process, but treating it as noisier than individual observations. Our findings suggest that human social learning is more flexible than previously believed, with the SG model indicating a potential resource-rational trade-off where social learning partially replaces individual exploration. This research highlights the flexibility of humans' social learning, allowing us to integrate social information from others with different preferences, skills, or goals.


Subject(s)
Reward , Social Learning , Humans , Male , Social Learning/physiology , Female , Adult , Individuality , Social Behavior , Young Adult
11.
Proc Natl Acad Sci U S A ; 121(37): e2411583121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39236242

ABSTRACT

Residual nonvisible bladder cancer after proper treatment caused by technological and therapeutic limitations is responsible for tumor relapse and progression. This study aimed to demonstrate the feasibility of a solution for simultaneous detection and treatment of bladder cancer lesions smaller than one millimeter. The α5ß1 integrin was identified as a specific marker in 81% of human high-grade nonmuscle invasive bladder cancers and used as a target for the delivery of targeted gold nanorods (GNRs). In a preclinical model of orthotopic bladder cancer expressing the α5ß1 integrin, the photoacoustic imaging of targeted GNRs visualized lesions smaller than one millimeter, and their irradiation with continuous laser was used to induce GNR-assisted hyperthermia. Necrosis of the tumor mass, improved survival, and computational modeling were applied to demonstrate the efficacy and safety of this solution. Our study highlights the potential of the GNR-assisted theranostic strategy as a complementary solution in clinical practice to reduce the risk of nonvisible residual bladder cancer after current treatment. Further validation through clinical studies will support the findings of the present study.


Subject(s)
Gold , Nanotubes , Theranostic Nanomedicine , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Gold/chemistry , Nanotubes/chemistry , Humans , Animals , Theranostic Nanomedicine/methods , Mice , Neoplasm, Residual , Cell Line, Tumor , Female , Photoacoustic Techniques/methods
12.
Proc Natl Acad Sci U S A ; 121(39): e2321321121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39284070

ABSTRACT

The prevalence of depression is a major societal health concern, and there is an ongoing need to develop tools that predict who will become depressed. Past research suggests that depression changes the language we use, but it is unclear whether language is predictive of worsening symptoms. Here, we test whether the sentiment of brief written linguistic responses predicts changes in depression. Across two studies (N = 467), participants provided responses to neutral open-ended questions, narrating aspects of their lives relevant to depression (e.g., mood, motivation, sleep). Participants also completed the Patient Health Questionnaire (PHQ-9) to assess depressive symptoms and a risky decision-making task with periodic measurements of momentary happiness to quantify mood dynamics. The sentiment of written responses was evaluated by human raters (N = 470), Large Language Models (LLMs; ChatGPT 3.5 and 4.0), and the Linguistic Inquiry and Word Count (LIWC) tool. We found that language sentiment evaluated by human raters and LLMs, but not LIWC, predicted changes in depressive symptoms at a three-week follow-up. Using computational modeling, we found that language sentiment was associated with current mood, but language sentiment predicted symptom changes even after controlling for current mood. In summary, we demonstrate a scalable tool that combines brief written responses with sentiment analysis by AI tools that matches human performance in the prediction of future psychiatric symptoms.


Subject(s)
Depression , Language , Humans , Depression/psychology , Female , Male , Adult , Affect/physiology , Middle Aged , Surveys and Questionnaires , Young Adult
13.
Proc Natl Acad Sci U S A ; 121(20): e2317373121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38722810

ABSTRACT

In many organisms, most notably Drosophila, homologous chromosomes associate in somatic cells, a phenomenon known as somatic pairing, which takes place without double strand breaks or strand invasion, thus requiring some other mechanism for homologs to recognize each other. Several studies have suggested a "specific button" model, in which a series of distinct regions in the genome, known as buttons, can associate with each other, mediated by different proteins that bind to these different regions. Here, we use computational modeling to evaluate an alternative "button barcode" model, in which there is only one type of recognition site or adhesion button, present in many copies in the genome, each of which can associate with any of the others with equal affinity. In this model, buttons are nonuniformly distributed, such that alignment of a chromosome with its correct homolog, compared with a nonhomolog, is energetically favored; since to achieve nonhomologous alignment, chromosomes would be required to mechanically deform in order to bring their buttons into mutual register. By simulating randomly generated nonuniform button distributions, many highly effective button barcodes can be easily found, some of which achieve virtually perfect pairing fidelity. This model is consistent with existing literature on the effect of translocations of different sizes on homolog pairing. We conclude that a button barcode model can attain highly specific homolog recognition, comparable to that seen in actual cells undergoing somatic homolog pairing, without the need for specific interactions. This model may have implications for how meiotic pairing is achieved.


Subject(s)
Models, Genetic , Animals , Chromosome Pairing , Drosophila melanogaster/genetics , Chromosomes , Drosophila/genetics , Computer Simulation , Chromosomes, Insect/genetics , Chromosomes, Insect/metabolism
14.
Proc Natl Acad Sci U S A ; 121(5): e2312898121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38277436

ABSTRACT

Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.


Subject(s)
Arousal , Brain , Humans , Arousal/physiology , Task Performance and Analysis , Pupil/physiology , Sensation
15.
Proc Natl Acad Sci U S A ; 121(14): e2318528121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38536752

ABSTRACT

Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.


Subject(s)
Memory, Short-Term , Transcranial Direct Current Stimulation , Adult , Humans , Memory, Short-Term/physiology , Gamma Rhythm/physiology , Brain , Cognition/physiology , Memory Disorders , Transcranial Direct Current Stimulation/methods
16.
Hum Mol Genet ; 33(19): 1697-1710, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39017605

ABSTRACT

Disease risk prediction based on genomic sequence and transcriptional profile can improve disease screening and prevention. Despite identifying many disease-associated DNA variants, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. In this study, we designed in vitro experiments to uncover the significance of occupancy and competitive binding between P53 and cMYC on common target genes. Analyzing publicly available ChIP-seq data for P53 and cMYC in embryonic stem cells showed that ~344-366 regions are co-occupied, and on average, two cis-overlapping motifs (CisOMs) per region were identified, suggesting that co-occupancy is evolutionarily conserved. Using U2OS and Raji cells untreated and treated with doxorubicin to increase P53 protein level while potentially reducing cMYC level, ChIP-seq analysis illustrated that around 16 to 922 genomic regions were co-occupied by P53 and cMYC, and substitutions of cMYC signals by P53 were detected post doxorubicin treatment. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data analysis. We utilized a computational motif-matching approach to illustrate that changes in predicted P53 binding affinity in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data, and expression of target genes from GTEx portal. We found significant correlation between change in cMYC-motif binding affinity in CisOMs and altered expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with common diseases.


Subject(s)
Proto-Oncogene Proteins c-myc , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Polymorphism, Single Nucleotide , Doxorubicin/pharmacology , Binding Sites , Protein Binding , Cell Line, Tumor
17.
Trends Immunol ; 44(7): 496-498, 2023 07.
Article in English | MEDLINE | ID: mdl-37258361

ABSTRACT

Tissue and inflammatory contexts are well appreciated to shape macrophage function to promote health or disease. However, there has been minimal progress towards understanding how these contexts modify signaling-to-transcription networks. Integration of mechanistic modeling and data-driven approaches will be crucial for investigating how cell state impacts macrophage decision-making.


Subject(s)
Health Promotion , Signal Transduction , Humans , Macrophages/metabolism , Gene Regulatory Networks
18.
Proc Natl Acad Sci U S A ; 120(47): e2308454120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956279

ABSTRACT

Many ion channels are multisubunit complexes where oligomerization is an obligatory requirement for function as the binding axis forms the charged permeation pathway. However, the mechanisms of in-membrane assembly of thermodynamically stable channels are largely unknown. Here, we demonstrate a key advance by reporting the dimerization equilibrium reaction of an inverted-topology, homodimeric fluoride channel Fluc in lipid bilayers. While the wild-type channel is a long-lived dimer, we leverage a known mutation, N43S, that weakens Na+ binding in a buried site at the interface, thereby unlocking the complex for reversible association in lipid bilayers. Single-channel recordings show that Na+ binding is required for fluoride conduction while single-molecule microscopy experiments demonstrate that N43S Fluc exists in a dynamic monomer-dimer equilibrium in the membrane, even following removal of Na+. Quantifying the thermodynamic stability while titrating Na+ indicates that dimerization occurs first, providing a membrane-embedded binding site where Na+ binding weakly stabilizes the complex. To understand how these subunits form stable assemblies while presenting charged surfaces to the membrane, we carried out molecular dynamics simulations, which show the formation of a thinned membrane defect around the exposed dimerization interface. In simulations where subunits are permitted to encounter each other while preventing protein contacts, we observe spontaneous and selective association at the native interface, where stability is achieved by mitigation of the membrane defect. These results suggest a model wherein membrane-associated forces drive channel assembly in the native orientation while subsequent factors, such as Na+ binding, result in channel activation.


Subject(s)
Fluorides , Lipid Bilayers , Dimerization , Lipid Bilayers/chemistry , Ion Channels/metabolism , Binding Sites
19.
Proc Natl Acad Sci U S A ; 120(46): e2310883120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37934818

ABSTRACT

Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) → 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.

20.
Proc Natl Acad Sci U S A ; 120(42): e2307880120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37816053

ABSTRACT

Stigmergy is a generic coordination mechanism widely used by animal societies, in which traces left by individuals in a medium guide and stimulate their subsequent actions. In humans, new forms of stigmergic processes have emerged through the development of online services that extensively use the digital traces left by their users. Here, we combine interactive experiments with faithful data-based modeling to investigate how groups of individuals exploit a simple rating system and the resulting traces in an information search task in competitive or noncompetitive conditions. We find that stigmergic interactions can help groups to collectively find the cells with the highest values in a table of hidden numbers. We show that individuals can be classified into three behavioral profiles that differ in their degree of cooperation. Moreover, the competitive situation prompts individuals to give deceptive ratings and reinforces the weight of private information versus social information in their decisions.


Subject(s)
Deception , Group Processes , Humans
SELECTION OF CITATIONS
SEARCH DETAIL