Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
Add more filters

Publication year range
1.
Biol Reprod ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904948

ABSTRACT

Conceptus estrogens and prostaglandins have long been considered the primary signals for maternal recognition of pregnancy (MRP) in the pig. However, loss-of-function studies targeting conceptus aromatase genes (CYP19A1 and CYP19A2) and prostaglandin-endoperoxide synthase 2 (PTGS2) indicated that conceptuses can not only signal MRP without estrogens or prostaglandins but can maintain early pregnancy. However, complete loss of estrogen production leads to abortion after day 25 of gestation. Although neither conceptus estrogens nor prostaglandins had a significant effect on early maintenance of CL function alone, the two conceptus factors have a biological relationship. To investigate the role that both conceptus estrogens and prostaglandins have on MRP and maintenance of pregnancy, a triple loss-of function model (TKO) was generated for conceptus CYP19A1, CYP19A2 and PTGS2. In addition, a conceptus CYP19A2-/- model (A2KO) was established to determine the role of placental estrogen during later pregnancy. Estrogen and prostaglandin synthesis were greatly reduced in TKO conceptuses which resulted in a failure to inhibit luteolysis after day 15 of pregnancy despite the presence of conceptuses in the uterine lumen. However, A2KO placentae not only maintained functional CL but were able to maintain pregnancy to day 32 of gestation. Despite the loss of placental CYP19A2 expression, the allantois fluid content of estrogen was not affected as the placenta compensated by expressing CYP19A1 and CYP19A3, which are normally absent in controls. Results suggest conceptuses can signal MRP through production of conceptus PGE or stimulating PGE synthesis from the endometrium through conceptus estrogen. Failure of conceptuses to produce both factors results in failure of MRP and loss of pregnancy.

2.
Biol Reprod ; 110(1): 169-184, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37707543

ABSTRACT

A central determinant of pregnancy success is proper development of the conceptus (embryo/fetus and associated extraembryonic membranes including the placenta). Although the gross morphology and histology of the bovine placenta have been well studied, the cellular and molecular mechanisms regulating placenta development and trophoblast differentiation and function remain essentially undefined. Here, single-cell transcriptome (scRNA-seq) analysis was performed on the day 17 bovine conceptus and chorion of day 24, 30, and 50 conceptuses (n = 3-4 samples per day) using the 10X Genomics platform. Bioinformatic analyses identified cell types and their ontogeny including trophoblast, mesenchyme, and immune cells. Loss of interferon tau-expressing trophoblast uninucleate cells occurred between days 17 and 30, whereas binucleate cells, identified based on expression of placental lactogen (CSH2) and specific pregnancy-associated glycoprotein genes (PAGs), first appeared on day 24. Several different types of uninucleate cells were present in day 24, 30, and 50 samples, but only one (day 24) or two types of binucleate cells (days 30 and 50). Cell trajectory analyses provided a conceptual framework for uninucleate cell development and binucleate cell differentiation, and bioinformatic analyses identified candidate transcription factors governing differentiation and function of the trophoblasts. The digital atlas of cell types in the developing bovine conceptus reported here serves as a resource to discover key genes and biological pathways regulating its development during the critical periods of implantation and placentation.


Subject(s)
Placenta , Trophoblasts , Pregnancy , Cattle , Animals , Female , Placenta/metabolism , Trophoblasts/metabolism , Placentation , Embryo Implantation , Cell Differentiation
3.
Biol Reprod ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836439

ABSTRACT

In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require ATP. We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine (PCr) for ATP regeneration through the creatine (Cr)-creatine kinase (CK)-PCr pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses and immunofluorescence microscopy localized GAMT, CKM, and CKB proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium (LE) at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. GAMT protein is expressed in endometrial LE at the uterine-placental interface, but immunostaining is more intense in LE at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.

4.
Biol Reprod ; 111(1): 148-158, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38501845

ABSTRACT

Fructose, the most abundant hexose sugar in fetal fluids and the blood of sheep and other ungulates and cetaceans, is synthesized from glucose via the polyol pathway in trophectoderm and chorion. However, the cell-specific and temporal expression of enzymes for the synthesis and metabolism of fructose in sheep conceptuses (embryo and placental membranes) and placentomes has not been characterized. This study characterized key enzymes involved in fructose synthesis and metabolism by ovine conceptuses throughout pregnancy. Day 17 conceptuses expressed mRNAs for the polyol pathway (SORD and AKR1B1) and glucose and fructose metabolism (HK1, HK2, G6PD, OGT, and FBP), but not those required for gluconeogenesis (G6Pase or PCK). Ovine placentomes also expressed mRNAs for SORD, AKR1B1, HK1, and OGT. Fructose can be metabolized via the ketohexokinase (KHK) pathway, and isoforms, KHK-A and KHK-C, were expressed in ovine conceptuses from Day 16 of pregnancy and placentomes during pregnancy in a cell-specific manner. The KHK-A protein was more abundant in the trophectoderm and cotyledons of placentomes, while KHK-C protein was more abundant in the endoderm of Day 16 conceptuses and the chorionic epithelium in placentomes. Expression of KHK mRNAs in placentomes was greatest at Day 30 of pregnancy (P < 0.05), but not different among days later in gestation. These results provide novel insights into the synthesis and metabolism of fructose via the uninhibited KHK pathway in ovine conceptuses to generate ATP via the tricarboxylic cycle, as well as substrates for the pentose cycle, hexosamine biosynthesis pathway, and one-carbon metabolism required for conceptus development throughout pregnancy.


Subject(s)
Fructose , Glucose , Placenta , Animals , Female , Fructose/metabolism , Pregnancy , Sheep/metabolism , Glucose/metabolism , Placenta/metabolism , Metabolic Networks and Pathways/genetics , Embryo, Mammalian/metabolism
5.
Biol Reprod ; 111(1): 159-173, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38531778

ABSTRACT

Lactate, an abundant molecule in fetal fluids and blood of mammalian species, is often overlooked as a metabolic waste product generated during pregnancy. Most of the glucose and fructose consumed by ovine conceptuses is converted to lactate, but proteins involved in lactate metabolism and transport have not been investigated. This study characterized total lactate produced by ovine conceptuses throughout gestation, as well as expression of mRNAs and proteins involved in lactate metabolism. Lactate increased in abundance in the uterine lumen during the preimplantation period and was more abundant than pyruvate. The abundance of lactate in allantoic and amniotic fluids increased with advancing days of gestation and most abundant on Day 125 of pregnancy (P < 0.05). Lactate dehydrogenase subunits A (converts pyruvate to lactate) and B (converts lactate to pyruvate) were expressed by conceptuses throughout gestation. Lactate is transported via monocarboxylic acid transporters SLC16A1 and SLC16A3, both of which were expressed by the conceptus throughout gestation. Additionally, the interplacentomal chorioallantois from Day 126 expressed SLC16A1 and SLC16A3 and transported lactate across the tissue. Hydrocarboxylic acid receptor 1 (HCAR1), a receptor for lactate, was localized to the uterine luminal and superficial glandular epithelia of pregnant ewes throughout gestation and conceptus trophectoderm during the peri-implantation period of gestation. These results provide novel insights into the spatiotemporal profiles of enzymes, transporters, and receptor for lactate by ovine conceptuses throughout pregnancy.


Subject(s)
Fructose , Glucose , Lactic Acid , Animals , Female , Pregnancy , Lactic Acid/metabolism , Lactic Acid/blood , Sheep , Glucose/metabolism , Fructose/metabolism , Metabolic Networks and Pathways/genetics , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Biological Transport , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental
6.
Biol Reprod ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832705

ABSTRACT

Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors (PPARs) mediate the signaling actions of prostaglandins and other lipids and, between them, PPARG has been pointed out to play a relevant role on conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG KO embryos in vitro by two independent gene ablation strategies and assess their developmental ability. In vitro development to Day (D) 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass and trophectoderm cell numbers were similar between WT and KO D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, and embryonic disc formation and hypoblast migration rates were unaffected by the ablation. The development to tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disc was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.

7.
FASEB J ; 37(8): e23054, 2023 08.
Article in English | MEDLINE | ID: mdl-37402070

ABSTRACT

Intercellular communication is a critical process that ensures cooperation between distinct cell types at the embryo-maternal interface. Extracellular vesicles (EVs) are considered to be potent mediators of this communication by transferring biological information in their cargo (e.g., miRNAs) to the recipient cells. miRNAs are small non-coding RNAs that affect the function and fate of neighboring and distant cells by regulating gene expression. Focusing on the maternal side of the dialog, we recently revealed the impact of embryonic signals, including miRNAs, on EV-mediated cell-to-cell communication. In this study, we show the regulatory mechanism of the miR-125b-5p ESCRT-mediated EV biogenesis pathway and the further secretion of EVs by trophoblasts at the time when the crucial steps of implantation are taking place. To test the ability of miR-125b-5p to influence the expression of genes involved in the generation and release of EV subpopulations in porcine conceptuses, we used an ex vivo approach. Next, in silico and in vitro analyses were performed to confirm miRNA-mRNA interactions. Finally, EV trafficking and release were assessed using several imaging and particle analysis tools. Our results indicated that conceptus development and implantation are accompanied by changes in the abundance of EV biogenesis and trafficking machinery. ESCRT-dependent EV biogenesis and the further secretion of EVs were modulated by miR-125b-5p, specifically impacting the ESCRT-II complex (via VPS36) and EV trafficking in primary porcine trophoblast cells. The identified miRNA-ESCRT interplay led to the generation and secretion of specific subpopulations of EVs. miRNA present at the embryo-maternal interface governs EV-mediated communication between the mother and the developing conceptus, leading to the generation, trafficking, and release of characteristic subpopulations of EVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Swine , Animals , Trophoblasts/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Embryo Implantation , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism
8.
J Dairy Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642647

ABSTRACT

Massive genotyping in cattle has uncovered several deleterious haplotypes that cause pre-term mortality. Holstein Haplotype 5 (HH5) is a deleterious haplotype present in the Holstein Friesian population that involves the ablation of the Transcription Factor B1 mitochondrial (TFB1M) gene. The developmental stage at which HH5 double-carrier (DC, homozygous) embryos or fetuses die remains unknown and this is a relevant information to estimate the economic losses associated to the inadvertent cross between carriers. To determine if HH5 DC survive to maternal recognition of pregnancy, embryonic day (E)14 embryos were flushed from superovulated carrier cows inseminated with a carrier bull. DC E14 conceptuses were recovered at Mendelian rates but they failed to achieve early elongation, as evidenced by a drastic (>26-fold) reduction in the proliferation of extraembryonic membranes compared with carrier or non-carrier embryos. To assess development at earlier stages, TFB1M knockout (KO) embryos -functionally equivalent to DC embryos- were generated by CRISPR technology and cultured to the blastocyst stage -Day (D)8- and to the early embryonic disc stage -D12-. No significant effect of TFB1M ablation was observed on the differentiation and proliferation of embryonic lineages and relative mtDNA content up to D12. In conclusion, HH5 DC embryos are able to develop to early embryonic disc stage but fail to undergo early conceptus elongation, required for pregnancy recognition.

9.
Trop Anim Health Prod ; 56(2): 76, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349441

ABSTRACT

Three experiments were conducted to evaluate the effects of long-acting injectable progesterone (iP4) in buffalo cows. In Experiment 1, ovariectomized buffaloes received 300 mg (iP300) or 600 mg (iP600) of iP4, and serum P4 concentrations were evaluated. In experiment 2, three groups were compared: control or administration of 300 mg of iP4 3 (iP4-D3) or 6 days (iP4-D6) after timed artificial insemination (TAI). On day 16, reproductive tract was recovered for conceptus, endometrium, and corpus luteum (CL) analysis. In experiment 3, pregnancy per AI (P/TAI) and proportion of pregnancy losses were evaluated after administration of 300 mg of iP4 3 (iP4-D3) or 6 days (iP4-D6) after TAI in lactating buffaloes. In experiment 1, serum P4 concentrations remained over 1 ng/mL for ~ 3 days in both groups. The 300 mg dose was used in subsequent experiments. In experiment 2, CL weight and endometrial glands density were decreased, and conceptus length was increased in iP4-D3 compared to control and to iP4-D6 (P < 0.05). Transcript abundance of Prostaglandin F Receptor (FP) and ISG15 in CL and of ISG15 and MX1 in endometrium was greater in iP4-D3 when compared to control and to iP4-D6 (P < 0.05). In experiment 3, there was no difference among experimental groups for P/TAI at D30 and pregnancy losses (P > 0.1); however, iP4-D3 presented a lower P/TAI at day 60 (41.7%) when compared to control (56.8%) and iP4-D6 (57.7%; P = 0.07). In conclusion, administration iP4 at 3 days after TAI affects CL development and consequently decreases final pregnancy outcome in buffaloes.


Subject(s)
Bison , Buffaloes , Animals , Female , Cattle , Pregnancy , Progesterone , Lactation , Insemination, Artificial/veterinary , Lutein , Dietary Supplements
10.
Biol Reprod ; 109(4): 415-431, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37540198

ABSTRACT

Endometrial inflammation is associated with reduced pregnancy per artificial insemination (AI) and increased pregnancy loss in cows. It was hypothesized that induced endometritis alters histotroph composition and induces inflammatory signatures on conceptus that compromise development. In Experiment 1, lactating cows were assigned to control (CON; n = 23) or to an intrauterine infusion of Escherichia coli and Trueperella pyogenes (ENDO; n = 34) to induce endometritis. Cows received AI 26 days after treatment, and the uterine fluid and conceptuses were collected on day 16 after AI. In Experiment 2, Holstein heifers were assigned to CON (n = 14) or ENDO (n = 14). An embryo was transferred on day 7 of the estrous cycle, and uterine fluid and conceptuses were recovered on day 16. Composition of histotroph and trophoblast and embryonic disc gene expression were assessed. Bacterial-induced endometritis in lactating cows altered histotroph composition and pathways linked to phospholipid synthesis, cellular energy production, and the Warburg effect. Also, ENDO reduced conceptus length in cows and altered expression of genes involved in pathogen recognition, nutrient uptake, cell growth, choline metabolism, and conceptus signaling needed for maternal recognition of pregnancy. The impact of ENDO was lesser on conceptuses from heifers receiving embryo transfer; however, the affected genes and associated pathways involved restricted growth and increased immune response similar to the observed responses to ENDO in conceptuses from lactating cows. Bacterial-induced endometrial inflammation altered histotroph composition, reduced conceptus growth, and caused embryonic cells to activate survival rather than anabolic pathways that could compromise development.


Subject(s)
Endometritis , Uterine Diseases , Pregnancy , Humans , Cattle , Animals , Female , Endometritis/veterinary , Lactation/physiology , Insemination, Artificial/veterinary , Inflammation
11.
Mol Reprod Dev ; 90(7): 673-683, 2023 07.
Article in English | MEDLINE | ID: mdl-35460118

ABSTRACT

Conceptus elongation and early placentation involve growth and remodeling that requires proliferation and migration of cells. This demands conceptuses expend energy before establishment of a placenta connection and when they are dependent upon components of histotroph secreted or transported into the uterine lumen from the uterus. Glucose and fructose, as well as many amino acids (including arginine, aspartate, glutamine, glutamate, glycine, methionine, and serine), increase in the uterine lumen during the peri-implantation period. Glucose and fructose enter cells via their transporters, SLC2A, SLC2A3, and SLC2A8, and amino acids enter the cells via specific transporters that are expressed by the conceptus trophectoderm. However, porcine conceptuses develop rapidly through extensive cellular proliferation and migration as they elongate and attach to the uterine wall resulting in increased metabolic demands. Therefore, coordination of multiple metabolic biosynthetic pathways is an essential aspect of conceptus development. Oxidative metabolism primarily occurs through the tricarboxylic acid (TCA) cycle and the electron transport chain, but proliferating and migrating cells, like the trophectoderm of pigs, enhance aerobic glycolysis. The glycolytic intermediates from glucose can then be shunted into the pentose phosphate pathway and one-carbon metabolism for the de novo synthesis of nucleotides. A result of aerobic glycolysis is limited availability of pyruvate for maintaining the TCA cycle, and trophectoderm cells likely replenish TCA cycle metabolites primarily through glutaminolysis to convert glutamine into TCA cycle intermediates. The synthesis of ATP, nucleotides, amino acids, and fatty acids through these biosynthetic pathways is essential to support elongation, migration, hormone synthesis, implantation, and early placental development of conceptuses.


Subject(s)
Glutamine , Placenta , Swine , Pregnancy , Female , Animals , Placenta/metabolism , Glutamine/metabolism , Uterus/metabolism , Amino Acids/metabolism , Metabolic Networks and Pathways , Fructose/metabolism , Glucose/metabolism , Nucleotides/metabolism
12.
Mol Reprod Dev ; 90(7): 646-657, 2023 07.
Article in English | MEDLINE | ID: mdl-35719060

ABSTRACT

Significant increases in litter size within commercial swine production over the past decades have led to increases in preweaning piglet mortality due to increase within-litter birthweight variation, typically due to mortality of the smallest littermate piglets. Therefore, identifying mechanisms to reduce variation in placental development and subsequent fetal growth are critical to normalizing birthweight variation and improving piglet survivability in high-producing commercial pigs. A major contributing factor to induction of within-litter variation occurs during the peri-implantation period as the pig blastocyst elongates from spherical to filamentous morphology in a short period of time and rapidly begins superficial implantation. During this period, there is significant within-litter variation in the timing and extent of elongation among littermates. As a result, delays and deficiencies in conceptus elongation not only contribute directly to early embryonic mortality, but also influence subsequent within-litter birthweight variation. This study will highlight key aspects of conceptus elongation and provide some recent evidence pertaining to specific mechanisms from -omics studies (i.e., metabolomics of the uterine environment and transcriptomics of the conceptus) that may specifically regulate the initiation of conceptus elongation to identify potential factors to reduce within-litter variation and improve piglet survivability.


Subject(s)
Embryo Implantation , Placenta , Swine , Pregnancy , Animals , Female , Birth Weight , Litter Size , Fetal Development/physiology
13.
Amino Acids ; 55(1): 125-137, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36383272

ABSTRACT

Highly proliferative cells rely on one carbon (1C) metabolism for production of formate required for synthesis of purines and thymidine for nucleic acid synthesis. This study was to determine if extracellular serine and/or glucose and fructose contribute the production of formate in ovine conceptuses. Suffolk ewes (n = 8) were synchronized to estrus, bred to fertile rams, and conceptuses were collected on Day 17 of gestation. Conceptuses were either snap frozen in liquid nitrogen (n = 3) or placed in culture in medium (n = 5) containing either: 1) 4 mM D-glucose + 2 mM [U-13C]serine; 2) 6 mM glycine + 4 mM D-glucose + 2 mM [U-13C]serine; 3) 4 mM D-fructose + 2 mM [U-13C]serine; 4) 6 mM glycine + 4 mM D-fructose + 2 mM [U-13C]serine; 5) 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine; or 6) 6 mM glycine + 4 mM D-glucose + 4 mM D-fructose + 2 mM [U-13C]serine. After 2 h incubation, conceptuses in their respective culture medium were homogenized and the supernatant analyzed for 12C- and 13C-formate by gas chromatography and amino acids by high performance liquid chromatography. Ovine conceptuses produced both 13C- and 12C-formate, indicating that the [U-13C]serine, glucose, and fructose were utilized to generate formate, respectively. Greater amounts of 12C-formate than 13C-formate were produced, indicating that the ovine conceptus utilized more glucose and fructose than serine to produce formate. This study is the first to demonstrate that both 1C metabolism and serinogenesis are active metabolic pathways in ovine conceptuses during the peri-implantation period of pregnancy, and that hexose sugars are the preferred substrate for generating formate required for nucleotide synthesis for proliferating trophectoderm cells.


Subject(s)
Interferon Type I , Serine , Pregnancy , Sheep , Animals , Female , Male , Glucose , Fructose , Sheep, Domestic/metabolism , Glycine , Formates
14.
Bioethics ; 37(2): 103-110, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36322903

ABSTRACT

Ethical deliberations are unfolding for potentially controversial organoid-entities such as brain organoids and embryoids. Much of the ethical deliberation centers on the questionable moral status of such organoid-entities. However, while such work is important and appropriate, ethical deliberations may become too exclusively rooted in moral status and potentially overshadow other relevant moral dilemmas. The ethical discussion on organoid models can benefit from insights brought forth by both Judith Jarvis Thomson and Don Marquis in how they attempted to advance the abortion debate. To discuss other abortion ethical issues more fully, both Thomson and Marquis assumed differing moral status positions of the conceptus and followed lines of reasoning based on these moral status assumptions. We suggest a similar approach with controversial organoid-entities like brain organoids and embryoids. To avoid overshadowing or overlooking other relevant ethical issues, ethicists ought to first assume an organoid-entity moral status position (such as a high moral status or no moral status) and explore any possible arguments that may result from such a position. While we ought not to copy the content of Thomson and Marquis' arguments exactly for organoid-entities, it is worthwhile to translate their arguments' overarching structures. This paper explores the relevant insights of Thomson and Marquis, how they can be translated into the organoid ethics debate, and what possible lines of inquiry may be worth exploring based on particular moral status assumptions.


Subject(s)
Abortion, Induced , Abortion, Spontaneous , Pregnancy , Female , Humans , Moral Status , Morals , Organoids
15.
J Dairy Sci ; 106(7): 5074-5095, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37164845

ABSTRACT

Our objectives were to evaluate the effects of complete replacement of inorganic salts of trace minerals (STM) with organic trace minerals (OTM) in both pre- and postpartum diets on ovarian dynamics, estrous behavior measured by sensors, preimplantation conceptus development, and reproductive performance in dairy cows. Pregnant cows and heifers (n = 273) were blocked by parity and body condition score and randomly assigned to either STM or OTM diets at 45 ± 3 d before their expected calving. Pre- and postpartum diets were formulated to meet 100% of recommended levels of each trace mineral in both treatments, taking into consideration both basal and supplemental levels. The final target concentrations of Co, Cu, Mn, Se, and Zn were, respectively, 0.25, 13.7, 40.0, 0.3, and 40.0 mg/kg in the prepartum diet, and 0.25, 15.7, 40.0, 0.3, and 63.0 mg/kg in the postpartum diet. The STM group was supplemented with Co, Cu, Mn, and Zn sulfates and sodium selenite, while the OTM group was supplemented with Co, Cu, Mn, and Zn proteinates and selenized yeast. Treatments continued until 156 d in milk (DIM) and were assigned to individual cows using automatic feeding gates. Starting at 21 DIM, ultrasonography examinations of the ovaries were performed weekly to determine the presence of a corpus luteum and postpartum resumption of ovarian cyclicity. Cows were presynchronized with 2 injections of PGF2α at 42 and 56 DIM. Estrous behavior was monitored using electronic activity tags that indirectly measured walking activity. Cows detected in estrus after the second PGF2α were inseminated, and those not detected in estrus by 67 DIM were enrolled in a synchronization program. Cows that returned to estrus after artificial insemination (AI) were reinseminated. Pregnancy diagnosis was performed 33 d after AI, and nonpregnant cows were resynchronized. Transcript expression of interferon-stimulated genes in peripheral blood leukocytes was performed in a subgroup of cows (STM, n = 67; OTM, n = 73) on d 19 after AI. A different subgroup of cows (28 STM, 29 OTM) received uterine flushing 15 d after AI for recovery of conceptuses and uterine fluid for analyses of transcriptomics and metabolomics, respectively. In addition, dominant follicle diameter, luteal size and blood flow, and concentration of progesterone in plasma were measured on d 0, 7, and 15 relative to AI. After flushing, PGF2α was given and the dominant follicle was aspirated 2 d later to measure the concentration of trace minerals by mass spectrometry. Estrous behavior, size of the dominant follicle and corpus luteum, concentration of progesterone, time to pregnancy, and proportion of cows pregnant by 100 d of the breeding period did not differ between treatments. A greater proportion of cows supplemented with OTM had a corpus luteum detected before presynchronization (64.3 vs. 75.2%), and primiparous cows supplemented with OTM tended to resume cyclicity earlier than their STM counterparts. Cows supplemented with OTM had a greater concentration of Cu in follicular fluid than cows supplemented with STM (0.89 vs. 0.77 µg/mL, respectively). In pregnant multiparous cows, expression of receptor transporter protein 4 in peripheral blood leukocytes was 42% greater in the OTM group. Conceptuses of the 2 treatments had 589 differentially expressed transcripts, with many indicating advanced conceptus elongation and greater transcript expression of selenoproteins in the OTM group. In pregnant cows, 24 metabolites were more abundant in the uterine fluid of OTM, including spermidine, sucrose, and cholesterol. In conclusion, replacing STM with OTM caused modest improvements to resumption of ovarian cyclicity and important changes in preimplantation conceptus development, but it did not alter conception risk and pregnancy rate.


Subject(s)
Trace Elements , Pregnancy , Cattle , Animals , Female , Progesterone , Lactation/physiology , Estrus Synchronization/methods , Plant Breeding , Postpartum Period , Diet/veterinary , Insemination, Artificial/veterinary , Biology , Dinoprost , Gonadotropin-Releasing Hormone
16.
J Dairy Sci ; 106(5): 3734-3747, 2023 May.
Article in English | MEDLINE | ID: mdl-37028965

ABSTRACT

Increasing progesterone (P4) during early conceptus development may be crucial for establishment of pregnancy in dairy cattle. The objective of this study was to determine if human chorionic gonadotropin (hCG) at various times after ovulation will increase serum P4 during elongation and increase the chances for, and reduce variability to, initial increase in pregnancy-specific protein B (PSPB) following artificial insemination (AI). Time to PSPB increase was defined as the first day of increase in concentrations of PSPB between d 18 and 28 after ovulation in cows with ≥12.5% increases for 3 consecutive days compared with baseline. Lactating cows (n = 368) synchronized to Double-Ovsynch (first service) or Ovsynch (second or greater service) received one of 4 treatments: no hCG (control), or 3,000 IU of hCG on d 2 (D2), 2 and 5 (D2+5), or 5 (D5) after ovulation. All cows were examined via ultrasound on d 5 and 10 postovulation to determine percentage of cows with hCG-induced accessory CL (aCL) and to quantify and measure all luteal structures. Samples for serum P4 were collected on d 0, 5, 19, and 20 postovulation. The P4 was increased in D2, D2+5, and D5 groups compared with control. The D2+5 and D5 treatments increased aCL and P4 compared with D2 and control. The D2 treatment increased P4 on d 5 after ovulation compared with control. Serum PSPB samples were collected daily from all cows on d 18 through 28 after ovulation for determination of d of PSPB increase. Pregnancy diagnoses were performed via ultrasound examination on d 35, 63, and 100 after ovulation and AI. The D5 treatment reduced percentage of cows with, and increased the time to, PSPB increase. Primiparous cows with ipsilateral aCL had reduced pregnancy loss before d 100 postovulation compared with cows with contralateral aCL. Cows that had PSPB increase >21 d postovulation had 4× greater chances of pregnancy loss compared with cows that had PSPB increase on d 20 or 21. The highest quartile of P4 on d 5, but not on d 19 and 20, was associated with reduced time to PSPB increase. Time to PSPB increase appears to be an important measurement to understand reasons for pregnancy loss in lactating dairy cows. Increasing P4 utilizing hCG after ovulation did not enhance early pregnancy or reduce pregnancy losses in lactating dairy cows.


Subject(s)
Lactation , Progesterone , Pregnancy , Female , Humans , Cattle , Animals , Estrus Synchronization , Chorionic Gonadotropin , Insemination, Artificial/veterinary , Gonadotropin-Releasing Hormone , Dinoprost
17.
Biochem Biophys Res Commun ; 594: 22-30, 2022 02 26.
Article in English | MEDLINE | ID: mdl-35066376

ABSTRACT

In ruminants, RNA-sequence analyses have revealed many characteristics of transcripts expressed in conceptuses (embryo and extraembryonic membrane) during peri-implantation periods; however, lncRNA profiles are yet characterized. In this study, we aimed to characterize the lncRNA expression profile in conceptuses during peri-implantation periods in sheep. We analyzed the RNA-sequence data of ovine conceptuses and endometria obtained from pregnant animals on days 15, 17, 19 and 21 (day 0 = day of estrus, n = 3 or 4/day). We predicted the protein coding ability of the assembled transcripts to identify the lncRNA candidates. This analysis identified 8808 lncRNAs, 3423 of which were novel lncRNAs. Gene ontology analysis revealed that lncRNA target genes were enriched for biological processes involved in the respiratory electron transport chain (RETC). qPCR analysis demonstrated that the expression levels on transcripts encoding RETC such as mitochondrially encoded cytochrome c oxidase II (MTCO2) and mitochondria DNA copy number in conceptuses were not increased on P21, although western blotting analysis and immunohistochemistry demonstrated that MTCO2 protein in conceptuses was increased on P21. NAD/NADH assay revealed that NADH level in conceptuses was increased on P21. These results indicate that lncRNAs could regulate the RETC through post-transcriptional levels in the conceptuses. Therefore, lncRNA is a potential new regulator in ovine conceptus development during peri-implantation periods.


Subject(s)
Electron Transport Complex IV/metabolism , Embryo Implantation/physiology , Endometrium/metabolism , RNA, Long Noncoding , Animals , Electron Transport , Electron Transport Complex IV/genetics , Embryo, Mammalian/metabolism , Estrus/metabolism , Female , Gene Expression Profiling , Pregnancy , Pregnancy, Animal/metabolism , RNA-Seq , Sheep
18.
Biol Reprod ; 107(4): 1084-1096, 2022 10 11.
Article in English | MEDLINE | ID: mdl-35835585

ABSTRACT

Roles of fructose in elongating ovine conceptuses are poorly understood, despite it being the major hexose sugar in fetal fluids and plasma throughout gestation. Therefore, we determined if elongating ovine conceptuses utilize fructose via metabolic pathways for survival and development. Immunohistochemical analyses revealed that trophectoderm and extra-embryonic endoderm express ketohexokinase and aldolase B during the peri-implantation period of pregnancy for conversion of fructose into fructose-1-phosphate for entry into glycolysis and related metabolic pathways. Conceptus homogenates were cultured with 14C-labeled glucose and/or fructose under oxygenated and hypoxic conditions to assess contributions of glucose and fructose to the pentose cycle (PC), tricarboxylic acid cycle, glycoproteins, and lipid synthesis. Results indicated that both glucose and fructose contributed carbons to each of these pathways, except for lipid synthesis, and metabolized to pyruvate and lactate, with lactate being the primary product of glycolysis under oxygenated and hypoxic conditions. We also found that (1) conceptuses preferentially oxidized glucose over fructose (P < 0.05); (2) incorporation of fructose and glucose at 4 mM each into the PC by Day 16 conceptus homogenates was similar in the presence or absence of glucose, but incorporation of glucose into the PC was enhanced by the presence of fructose (P < 0.05); (3) incorporation of fructose into the PC in the absence of glucose was greater under oxygenated conditions (P < 0.01); and (4) incorporation of glucose into the PC under oxygenated conditions was greater in the presence of fructose (P = 0.05). These results indicate that fructose is an important metabolic substrate for ovine conceptuses.


Subject(s)
Fructose-Bisphosphate Aldolase , Fructose , Animals , Female , Fructokinases , Glucose , Lactates , Lipids , Pentoses , Pregnancy , Pyruvates , Sheep , Sheep, Domestic
19.
Biol Reprod ; 107(3): 823-833, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35552608

ABSTRACT

During the peri-implantation period of pregnancy, the trophectoderm of pig conceptuses utilize glucose via multiple biosynthetic pathways to support elongation and implantation, resulting in limited availability of pyruvate for metabolism via the TCA cycle. Therefore, we hypothesized that porcine trophectoderm cells replenish tricarboxylic acid (TCA) cycle intermediates via a process known as anaplerosis and that trophectoderm cells convert glutamine to α-ketoglutarate, a TCA cycle intermediate, through glutaminolysis. Results demonstrate: (1) that expression of glutaminase (GLS) increases in trophectoderm and glutamine synthetase (GLUL) increases in extra-embryonic endoderm of conceptuses, suggesting that extra-embryonic endoderm synthesizes glutamine, and trophectoderm converts glutamine into glutamate; and (2) that expression of glutamate dehydrogenase 1 (GLUD1) decreases and expression of aminotransferases including PSAT1 increase in trophectoderm, suggesting that glutaminolysis occurs in the trophectoderm through the GLS-aminotransferase pathway during the peri-implantation period. We then incubated porcine conceptuses with 13C-glutamine in the presence or absence of glucose in the culture media and then monitored the movement of glutamine-derived carbons through metabolic intermediates within glutaminolysis and the TCA cycle. The 13C-labeled carbons were accumulated in glutamate, α-ketoglutarate, succinate, malate, citrate, and aspartate in both the presence and absence of glucose in the media, and the accumulation of 13C-labeled carbons significantly increased in the absence of glucose in the media. Collectively, our results indicate that during the peri-implantation period of pregnancy, the proliferating and migrating trophectoderm cells of elongating porcine conceptuses utilize glutamine via glutaminolysis as an alternate carbon source to maintain TCA cycle flux.


Subject(s)
Glutamine , Ketoglutaric Acids , Animals , Carbon Isotopes , Female , Glucose/metabolism , Glutamic Acid/metabolism , Ketoglutaric Acids/metabolism , Pregnancy , Pyruvic Acid , Swine
20.
Biol Reprod ; 106(3): 487-502, 2022 03 19.
Article in English | MEDLINE | ID: mdl-34792096

ABSTRACT

Conceptus secretory factors include galectins, a family of carbohydrate binding proteins that elicit cell adhesion and immune suppression by interacting with intracellular and extracellular glycans. In rodents, galectin-1 (LGALS1) promotes maternal-fetal immune tolerance in the decidua through expansion of tolerogenic cluster of differentiation 11c (CD11c) positive dendritic cells, increased anti-inflammatory interleukin (IL)-10, and activation of forkhead box P3 (FOXP3) positive regulatory T cells (Treg). This study characterized galectin expression in early ruminant conceptuses and endometrium. We also tested the effect of recombinant bovine LGALS1 (rbLGALS1) and progesterone (P4) on endometrial expression of genes and protein related to maternal-conceptus immune tolerance in cattle. Elongating bovine and ovine conceptuses expressed several galectins, particularly, LGALS1, LGALS3, and LGALS8. Within bovine endometrium, expression of LGALS3, LGALS7, and LGALS9 was greater on Day 16 of pregnancy compared to the estrous cycle. Within ovine endometrium, LGALS7 was greater during pregnancy compared to the estrous cycle and endometrium of pregnant sheep tended to have greater LGALS9 and LGALS15. Expression of endometrial LGALS4 was less during pregnancy in sheep. Treating bovine endometrium with rbLGALS1 increased endometrial expression of CD11c, IL-10, and FOXP3, within 24 h. Specifically, within caruncular endometrium, both rbLGALS1 and P4 increased FOXP3, suggesting that both ligands may promote Treg expansion. Using IHC, FOXP3+ cells with a leukocyte phenotype were localized to the bovine uterine stratum compactum near the uterine surface and increased in response to rbLGALS1. We hypothesize that galectins have important functions during establishment of pregnancy in ruminants and bovine conceptus LGALS1 and luteal P4 confer mechanisms of maternal-conceptus immune tolerance in cattle.


Subject(s)
Galectin 1 , Pregnancy, Animal , Animals , Cattle , Endometrium/metabolism , Female , Forkhead Transcription Factors , Galectin 1/genetics , Galectin 1/metabolism , Galectin 3/metabolism , Galectins/genetics , Galectins/metabolism , Immune Tolerance , Pregnancy , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL