Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Brain ; 145(11): 3787-3802, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35022694

ABSTRACT

Humans carrying the CORD7 (cone-rod dystrophy 7) mutation possess increased verbal IQ and working memory. This autosomal dominant syndrome is caused by the single-amino acid R844H exchange (human numbering) located in the 310 helix of the C2A domain of RIMS1/RIM1 (Rab3-interacting molecule 1). RIM is an evolutionarily conserved multi-domain protein and essential component of presynaptic active zones, which is centrally involved in fast, Ca2+-triggered neurotransmitter release. How the CORD7 mutation affects synaptic function has remained unclear thus far. Here, we established Drosophila melanogaster as a disease model for clarifying the effects of the CORD7 mutation on RIM function and synaptic vesicle release. To this end, using protein expression and X-ray crystallography, we solved the molecular structure of the Drosophila C2A domain at 1.92 Šresolution and by comparison to its mammalian homologue ascertained that the location of the CORD7 mutation is structurally conserved in fly RIM. Further, CRISPR/Cas9-assisted genomic engineering was employed for the generation of rim alleles encoding the R915H CORD7 exchange or R915E, R916E substitutions (fly numbering) to effect local charge reversal at the 310 helix. Through electrophysiological characterization by two-electrode voltage clamp and focal recordings we determined that the CORD7 mutation exerts a semi-dominant rather than a dominant effect on synaptic transmission resulting in faster, more efficient synaptic release and increased size of the readily releasable pool but decreased sensitivity for the fast calcium chelator BAPTA. In addition, the rim CORD7 allele increased the number of presynaptic active zones but left their nanoscopic organization unperturbed as revealed by super-resolution microscopy of the presynaptic scaffold protein Bruchpilot/ELKS/CAST. We conclude that the CORD7 mutation leads to tighter release coupling, an increased readily releasable pool size and more release sites thereby promoting more efficient synaptic transmitter release. These results strongly suggest that similar mechanisms may underlie the CORD7 disease phenotype in patients and that enhanced synaptic transmission may contribute to their increased cognitive abilities.


Subject(s)
Drosophila melanogaster , Retinitis Pigmentosa , Animals , Humans , Cognition , Mutation , Presynaptic Terminals , Retinitis Pigmentosa/genetics , Synaptic Transmission , Drosophila Proteins/genetics
2.
J Theor Biol ; 550: 111206, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35850254

ABSTRACT

The establishment of a recent theoretical model of a coupled cortical thalamic network is an important step in the spatiotemporal dynamics of the brain. However, choosing the coupling distances and parameters for deep brain stimulation remains a very challenging task. This study aimed to establish a coupled cortical thalamic model with uncertain coupling distances. Utilizing different pathways formed by the pyramidal neuronal population, thalamic reticular nucleus, and thalamic relay nucleus, we reduced epileptic seizures with spike-wave discharges (SWDs) at 2-4 Hz. In modelling terms, numerical simulations demonstrated that a combination (1/3, 1/9) of the left and right ventricles is the optimal coupling distance of the proposed model by analyzing the percentage of SWDs. In simulation terms, on the one hand, the number of SWDs is inversely proportional to the amplitude; on the other hand, the number of SWDs shows a U-shaped trend with the change in frequency. The present study provides an important theoretical basis and direction for the future treatment of absence epilepsy. In brief, our simulation results will hopefully provide some help to patients.


Subject(s)
Electroencephalography , Epilepsy, Absence , Humans , Neurons , Seizures , Thalamus
3.
Prog Neurobiol ; 208: 102182, 2022 01.
Article in English | MEDLINE | ID: mdl-34695543

ABSTRACT

Neurotransmitter release occurs either synchronously with action potentials (evoked release) or spontaneously (spontaneous release). Whether the molecular mechanisms underlying evoked and spontaneous release are identical, especially whether voltage-gated calcium channels (VGCCs) can trigger spontaneous events, is still a matter of debate in glutamatergic synapses. To elucidate this issue, we characterized the VGCC dependence of miniature excitatory postsynaptic currents (mEPSCs) in various synapses with different coupling distances between VGCCs and synaptic vesicles, known as a critical factor in evoked release. We found that most of the extracellular calcium-dependent mEPSCs were attributable to VGCCs in cultured autaptic hippocampal neurons and the mature calyx of Held where VGCCs and vesicles were tightly coupled. Among loosely coupled synapses, mEPSCs were not VGCC-dependent at immature calyx of Held and CA1 pyramidal neuron synapses, whereas VGCCs contribution was significant at CA3 pyramidal neuron synapses. Interestingly, the contribution of VGCCs to spontaneous glutamate release in CA3 pyramidal neurons was abolished by a calmodulin antagonist, calmidazolium. These data suggest that coupling distance between VGCCs and vesicles determines VGCC dependence of spontaneous release at tightly coupled synapses, yet VGCC contribution can be achieved indirectly at loosely coupled synapses.


Subject(s)
Calmodulin , Glutamic Acid , Calcium/metabolism , Calcium Channels , Excitatory Postsynaptic Potentials/physiology , Humans , Synapses/metabolism
4.
Front Cell Neurosci ; 16: 1037721, 2022.
Article in English | MEDLINE | ID: mdl-36385953

ABSTRACT

Synapses are junctions between a presynaptic neuron and a postsynaptic cell specialized for fast and precise information transfer. The presynaptic terminal secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is a tightly regulated reaction that occurs within a millisecond of the arrival of an action potential. One crucial parameter in determining the characteristics of the transmitter release kinetics is the coupling distance between the release site and the Ca2+ channel. Still, the technical limitations have hindered detailed analysis from addressing how the coupling distance is regulated depending on the development or activity of the synapse. However, recent technical advances in electrophysiology and imaging are unveiling their different configurations in different conditions. Here, I will summarize developmental- and activity-dependent changes in the coupling distances revealed by recent studies.

5.
ACS Appl Mater Interfaces ; 14(3): 4714-4724, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35081679

ABSTRACT

Surface-enhanced Raman scattering (SERS)-based biosensors are promising tools for virus nucleic acid detection. However, it remains challenging for SERS-based biosensors using a sandwiching strategy to detect long-chain nucleic acids such as nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because the extension of the coupling distance (CD) between the two tethered metallic nanostructures weakens electric field and SERS signals. Herein, we report a magnetic-responsive substrate consisting of heteoronanostructures that controls the CD for ultrasensitive and highly selective detection of the N gene of SARS-CoV-2. Significantly, our findings show that this platform reversibly shortens the CD and enhances SERS signals with a 10-fold increase in the detection limit from 1 fM to 100 aM, compared to those without magnetic modulation. The optical simulation that emulates the CD shortening process confirms the CD-dependent electric field strength and further supports the experimental results. Our study provides new insights into designing a stimuli-responsive SERS-based platform with tunable hot spots for long-chain nucleic acid detection.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , Nucleic Acids/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19/genetics , COVID-19/virology , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nucleic Acids/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Silver/chemistry , Spectrum Analysis, Raman/methods
6.
Article in English | MEDLINE | ID: mdl-31632263

ABSTRACT

The exogenous Ca2+ chelator EGTA (ethylene glycol tetraacetic acid) has been widely used to probe the coupling distance between Ca2+ channels and vesicular Ca2+ sensors for neurotransmitter release. Because of its slow forward rate for binding, EGTA is thought to not capture calcium ions in very proximity to a channel, whereas it does capture calcium ions at the remote distance. However, in this study, our reaction diffusion simulations (RDSs) of Ca2+ combined with a release calculation using vesicular sensor models indicate that a high concentration of EGTA decreases Ca2+ and vesicular release in the nanodomain of single channels. We found that a key determinant of the effect of EGTA on neurotransmitter release is the saturation of the vesicular sensor. When the sensor is saturated, the reduction in the Ca2+ concentration by EGTA is masked. By contrast, when the sensor is in a linear range, even a small reduction in Ca2+ by EGTA can decrease vesicular release. In proximity to a channel, the vesicular sensor is often saturated for a long voltage step, but not for a brief Ca2+ influx typically evoked by an action potential. Therefore, when EGTA is used as a diagnostic tool to probe the coupling distance, care must be taken regarding the presynaptic Ca2+ entry duration as well as the property of the vesicular Ca2+ sensor.

7.
Front Mol Neurosci ; 11: 494, 2018.
Article in English | MEDLINE | ID: mdl-30697148

ABSTRACT

Ca2+ concentrations drop rapidly over a distance of a few tens of nanometers from an open voltage-gated Ca2+ channel (Cav), thereby, generating a spatially steep and temporally short-lived Ca2+ gradient that triggers exocytosis of a neurotransmitter filled synaptic vesicle. These non-steady state conditions make the Ca2+-binding kinetics of the Ca2+ sensors for release and their spatial coupling to the Cavs important parameters of synaptic efficacy. In the mammalian central nervous system, the main release sensors linking action potential mediated Ca2+ influx to synchronous release are Synaptotagmin (Syt) 1 and 2. We review here quantitative work focusing on the Ca2+ kinetics of Syt2-mediated release. At present similar quantitative detail is lacking for Syt1-mediated release. In addition to triggering release, Ca2+ remaining bound to Syt after the first of two successive high-frequency activations was found to be capable of facilitating release during the second activation. More recently, the Ca2+ sensor Syt7 was identified as additional facilitation sensor. We further review how several recent functional studies provided quantitative insights into the spatial topographical relationships between Syts and Cavs and identified mechanisms regulating the sensor-to-channel coupling distances at presynaptic active zones. Most synapses analyzed in matured cortical structures were found to operate at tight, nanodomain coupling. For fast signaling synapses a developmental switch from loose, microdomain to tight, nanodomain coupling was found. The protein Septin5 has been known for some time as a developmentally down-regulated "inhibitor" of tight coupling, while Munc13-3 was found only recently to function as a developmentally up-regulated mediator of tight coupling. On the other hand, a highly plastic synapse was found to operate at loose coupling in the matured hippocampus. Together these findings suggest that the coupling topography and its regulation is a specificity of the type of synapse. However, to definitely draw such conclusion our knowledge of functional active zone topographies of different types of synapses in different areas of the mammalian brain is too incomplete.

SELECTION OF CITATIONS
SEARCH DETAIL